Loading…

An octagonal split ring resonator-based double negative metamaterial for S-, X- and Ku-band applications

This study aimed to produce a miniaturised double negative metamaterial with a lower resonance frequency. Therefore, a new combination of a multi-circular ring connected with octagonal shape ring metamaterial was developed on a 9 × 9 mm2 dielectric substrate material with a thickness of 1.6 mm, name...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2022-11, Vol.236 (11), p.2269-2280
Main Authors: Idrus, Ismatul N, Faruque, Mohammad RI, Abdullah, Sabirin, Islam, Mohammad T, Khandaker, Mayeen U, Nebhen, Jamel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to produce a miniaturised double negative metamaterial with a lower resonance frequency. Therefore, a new combination of a multi-circular ring connected with octagonal shape ring metamaterial was developed on a 9 × 9 mm2 dielectric substrate material with a thickness of 1.6 mm, named the Flame Retardant 4 (FR-4). While the selected frequency ranged between 0 and 18 GHz for the unit and array metamaterial design. Numerical simulation was used for the design and analysis of the proposed metamaterial. A few analysis were performed to validate the performance of the new design including the analyses of the different dimensions of the substrate and varying widths of the split gaps. The proposed design structure manifested resonance frequencies at S, X and Ku-bands. The resonance frequency at S-band (3.31 GHz) and X-band (8.60 GHz) presented double-negative (DNG) metamaterial behaviour while X-band (11.93 GHz) and Ku-band (12.99 GHz) presented single-negative (SNG) medium characteristics. The simulation and measured results almost coincided with each other. The compactness of the proposed design was proven by the effective medium ratio (EMR) of 10.07. In conclusion, the miniaturised structure can be accredited for satellite communication and radar applications.
ISSN:1464-4207
2041-3076
DOI:10.1177/14644207211017155