Loading…
Evolution of Gas, and Star Formation from z = 0 to 5
ALMA observations of the long wavelength dust continuum are used to estimate the gas masses in a sample of 708 star-forming (SF) galaxies at z = 0.3 to 4.5. We determine the dependence of gas masses and star formation efficiencies (SFE=SFR per unit gass mass). We find that 70 percent of the increase...
Saved in:
Published in: | arXiv.org 2022-11 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ALMA observations of the long wavelength dust continuum are used to estimate the gas masses in a sample of 708 star-forming (SF) galaxies at z = 0.3 to 4.5. We determine the dependence of gas masses and star formation efficiencies (SFE=SFR per unit gass mass). We find that 70 percent of the increase in SFRs of the MS is due to the increased gas masses at earlier epochs while 30 percent is due to increased efficiency of SF. For galaxies above the MS this is reversed with 70 percent of the increased SFR relative to the MS being due to elevated SFEs. Thus, the major evolution of star formation activity at early epochs is driven by increased gas masses, while the starburst activity taking galaxies above the MS is due to enhanced triggering of star formation (likely due to galactic merging). The interstellar gas peaks at z = 2 and dominates the stellar mass down to z = 1.2. Accretion rates needed to maintain continuity of the MS evolution exceed 100 Msun per yr at z > 2. The galactic gas contents are likely the driving determinant for both the rise in SF and AGN activity from z = 5 to their peak at z = 2 and subsequent fall to lower z. We suggest that for self-gravitating clouds with supersonic turbulence, cloud collisions and the filamentary structure of the clouds regulate the star formation activity. |
---|---|
ISSN: | 2331-8422 |