Loading…
Scattering Expansion for Localization in One Dimension: from Disordered Wires to Quantum Walks
We present a perturbative approach to disordered systems in one spatial dimension that accesses the full range of phase disorder and clarifies the connection between localization and phase information. We consider a long chain of identically disordered scatterers and expand in the reflection strengt...
Saved in:
Published in: | arXiv.org 2024-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a perturbative approach to disordered systems in one spatial dimension that accesses the full range of phase disorder and clarifies the connection between localization and phase information. We consider a long chain of identically disordered scatterers and expand in the reflection strength of any individual scatterer. We apply this expansion to several examples, including the Anderson model, a general class of periodic-on-average-random potentials, and a two-component discrete-time quantum walk, showing analytically in the latter case that the localization length can depend non-monotonically on the strength of phase disorder (whereas expanding in weak disorder yields monotonic decrease). More generally, we obtain to all orders in the expansion a particular non-separable form for the joint probability distribution of the transmission coefficient logarithm and reflection phase. Furthermore, we show that for weak local reflection strength, a version of the scaling theory of localization holds: the joint distribution is determined by just three parameters. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2211.13368 |