Loading…
Ericksen-Landau Modular Strain Energies for Reconstructive Phase Transformations in 2D crystals
By using modular functions on the upper complex half-plane, we study a class of strain energies for crystalline materials whose global invariance originates from the full symmetry group of the underlying lattice. This follows Ericksen's suggestion which aimed at extending the Landau-type theori...
Saved in:
Published in: | arXiv.org 2022-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | By using modular functions on the upper complex half-plane, we study a class of strain energies for crystalline materials whose global invariance originates from the full symmetry group of the underlying lattice. This follows Ericksen's suggestion which aimed at extending the Landau-type theories to encompass the behavior of crystals undergoing structural phase transformation, with twinning, microstructure formation, and possibly associated plasticity effects. Here we investigate such Ericksen-Landau strain energies for the modelling of reconstructive transformations, focusing on the prototypical case of the square-hexagonal phase change in 2D crystals. We study the bifurcation and valley-floor network of these potentials, and use one in the simulation of a quasi-static shearing test. We observe typical effects associated with the micro-mechanics of phase transformation in crystals, in particular, the bursty progression of the structural phase change, characterized by intermittent stress-relaxation through microstructure formation, mediated, in this reconstructive case, by defect nucleation and movement in the lattice. |
---|---|
ISSN: | 2331-8422 |