Loading…

Design Considerations and Quantum Confinement Effect in Monolithic ε-Ge/InxGa1-xAs Nanoscale FinFETs Down to N5 Node

In this work, we have studied the effect of material parameters (indium (In) composition and doping), geometrical parameters [channel length {L} , fin width {W} , aspect ratio (AR)], and quantum confinement (QC) on the performance and operability of a \varepsilon -Ge /InxGa _{{1}-{x}} As hybrid C...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2022-12, Vol.69 (12), p.6616-6623
Main Authors: Joshi, Rutwik, Karthikeyan, Sengunthar, Hudait, Mantu K.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6623
container_issue 12
container_start_page 6616
container_title IEEE transactions on electron devices
container_volume 69
creator Joshi, Rutwik
Karthikeyan, Sengunthar
Hudait, Mantu K.
description In this work, we have studied the effect of material parameters (indium (In) composition and doping), geometrical parameters [channel length {L} , fin width {W} , aspect ratio (AR)], and quantum confinement (QC) on the performance and operability of a \varepsilon -Ge /InxGa _{{1}-{x}} As hybrid CMOS system. In this system, the In compositional InxGa _{{1}-{x}} As and tensile-strained Ge ( \varepsilon -Ge) grown on the InxGa _{{1}-{x}} As layer were used as n- and p-channel FinFETs, respectively. The In composition in InxGa _{{1}-{x}} As layer (lattice matched with graded InxAl _{{1}-{x}} As buffer) determines the amount of tensile strain in Ge. This hybrid system utilizes the benefits of metamorphic (InxGa _{{1}-{x}} As/InxAl _{{1}-{x}} As) as well as pseudomorphic ( \varepsilon -Ge/InxGa _{{1}-{x}} As) heteroepitaxy to create high-performance tunable complementary devices, suitable for 0.5 V CMOS operation. The device metrics such as, threshold voltage, ON-current ( {I}_{\text {on}} ), OFF-current ( {I}_{\text {off}} ), subthreshold-swing (SS), and drain-induced barrier lowering (DIBL), and their dependence on material and geometrical parameters were evaluated using self-consistent analytical solvers scaled down to the N5 node. At these scaled dimensions, this hybrid system demonstrated ultralow leakage current and SS for the n-FinFET and p-FinFET of 10 pA/ \mu \tex
doi_str_mv 10.1109/TED.2022.3212337
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2745134720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9927489</ieee_id><sourcerecordid>2745134720</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1607-191b9ad8ab96472d05b7a13ecead0aaec041789c547c889471f981745ab666a63</originalsourceid><addsrcrecordid>eNotz81Kw0AQB_BFFKzVu-BlwXPa_Uiyu8fSLwtaEeo5TJKJbml3azbB-mC-hs_kSj3NDPPjPwwht5yNOGdmvJnPRoIJMZKCCynVGRnwLFOJydP8nAwY4zoxUstLchXCNo55mooB6WcY7JujU--CrbGFzsaOgqvpSw-u6_d_q8Y63KPr6LxpsOqodfTJO7-z3but6M93ssTxyh2XwJPjJNA1OB8q2CFdWLeYbwKd-U9HO0_XGV37Gq_JRQO7gDf_dUheI5s-JI_Py9V08phYnjOVcMNLA7WGMn6hRM2yUgGXWCHUDAArlnKlTZWlqtLapIo3RnOVZlDmeQ65HJL7U-6h9R89hq7Y-r518WQhIuMyprKo7k7KImJxaO0e2q_CmEi0kb__I2Xo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745134720</pqid></control><display><type>article</type><title>Design Considerations and Quantum Confinement Effect in Monolithic ε-Ge/InxGa1-xAs Nanoscale FinFETs Down to N5 Node</title><source>IEEE Xplore (Online service)</source><creator>Joshi, Rutwik ; Karthikeyan, Sengunthar ; Hudait, Mantu K.</creator><creatorcontrib>Joshi, Rutwik ; Karthikeyan, Sengunthar ; Hudait, Mantu K.</creatorcontrib><description><![CDATA[In this work, we have studied the effect of material parameters (indium (In) composition and doping), geometrical parameters [channel length <inline-formula> <tex-math notation="LaTeX">{L} </tex-math></inline-formula>, fin width <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>, aspect ratio (AR)], and quantum confinement (QC) on the performance and operability of a <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula>-Ge /InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As hybrid CMOS system. In this system, the In compositional InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As and tensile-strained Ge (<inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula>-Ge) grown on the InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As layer were used as n- and p-channel FinFETs, respectively. The In composition in InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As layer (lattice matched with graded InxAl<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As buffer) determines the amount of tensile strain in Ge. This hybrid system utilizes the benefits of metamorphic (InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As/InxAl<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As) as well as pseudomorphic (<inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula>-Ge/InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As) heteroepitaxy to create high-performance tunable complementary devices, suitable for 0.5 V CMOS operation. The device metrics such as, threshold voltage, ON-current (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {on}} </tex-math></inline-formula>), OFF-current (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {off}} </tex-math></inline-formula>), subthreshold-swing (SS), and drain-induced barrier lowering (DIBL), and their dependence on material and geometrical parameters were evaluated using self-consistent analytical solvers scaled down to the N5 node. At these scaled dimensions, this hybrid system demonstrated ultralow leakage current and SS for the n-FinFET and p-FinFET of 10 pA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, 27 nA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, 85, and 95 mV/dec, respectively. With the effect of QC, we identify a transition fin width (<inline-formula> <tex-math notation="LaTeX">{W}_{T} </tex-math></inline-formula>) associated with scaling of alternate channel FinFETs, at which the performance is optimum and below <inline-formula> <tex-math notation="LaTeX">{W}_{T} </tex-math></inline-formula>, the benefits of scaling are diminished. Moreover, this hybrid system has a potential to find applications in optoelectronic and RF systems as well as high-performance computing.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3212337</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aspect ratio ; CMOS ; Composition ; confinement (QC) ; Doping ; FinFETs ; Germanium ; Hybrid systems ; Lattice matching ; Leakage current ; Nanoscale devices ; Optoelectronics ; Parameters ; Performance evaluation ; Photonic band gap ; Quantum confinement ; Tensile strain ; tensile strained germanium ; Threshold voltage</subject><ispartof>IEEE transactions on electron devices, 2022-12, Vol.69 (12), p.6616-6623</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0559-3477 ; 0000-0002-9789-3081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9927489$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Joshi, Rutwik</creatorcontrib><creatorcontrib>Karthikeyan, Sengunthar</creatorcontrib><creatorcontrib>Hudait, Mantu K.</creatorcontrib><title>Design Considerations and Quantum Confinement Effect in Monolithic ε-Ge/InxGa1-xAs Nanoscale FinFETs Down to N5 Node</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[In this work, we have studied the effect of material parameters (indium (In) composition and doping), geometrical parameters [channel length <inline-formula> <tex-math notation="LaTeX">{L} </tex-math></inline-formula>, fin width <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>, aspect ratio (AR)], and quantum confinement (QC) on the performance and operability of a <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula>-Ge /InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As hybrid CMOS system. In this system, the In compositional InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As and tensile-strained Ge (<inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula>-Ge) grown on the InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As layer were used as n- and p-channel FinFETs, respectively. The In composition in InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As layer (lattice matched with graded InxAl<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As buffer) determines the amount of tensile strain in Ge. This hybrid system utilizes the benefits of metamorphic (InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As/InxAl<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As) as well as pseudomorphic (<inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula>-Ge/InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As) heteroepitaxy to create high-performance tunable complementary devices, suitable for 0.5 V CMOS operation. The device metrics such as, threshold voltage, ON-current (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {on}} </tex-math></inline-formula>), OFF-current (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {off}} </tex-math></inline-formula>), subthreshold-swing (SS), and drain-induced barrier lowering (DIBL), and their dependence on material and geometrical parameters were evaluated using self-consistent analytical solvers scaled down to the N5 node. At these scaled dimensions, this hybrid system demonstrated ultralow leakage current and SS for the n-FinFET and p-FinFET of 10 pA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, 27 nA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, 85, and 95 mV/dec, respectively. With the effect of QC, we identify a transition fin width (<inline-formula> <tex-math notation="LaTeX">{W}_{T} </tex-math></inline-formula>) associated with scaling of alternate channel FinFETs, at which the performance is optimum and below <inline-formula> <tex-math notation="LaTeX">{W}_{T} </tex-math></inline-formula>, the benefits of scaling are diminished. Moreover, this hybrid system has a potential to find applications in optoelectronic and RF systems as well as high-performance computing.]]></description><subject>Aspect ratio</subject><subject>CMOS</subject><subject>Composition</subject><subject>confinement (QC)</subject><subject>Doping</subject><subject>FinFETs</subject><subject>Germanium</subject><subject>Hybrid systems</subject><subject>Lattice matching</subject><subject>Leakage current</subject><subject>Nanoscale devices</subject><subject>Optoelectronics</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Photonic band gap</subject><subject>Quantum confinement</subject><subject>Tensile strain</subject><subject>tensile strained germanium</subject><subject>Threshold voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotz81Kw0AQB_BFFKzVu-BlwXPa_Uiyu8fSLwtaEeo5TJKJbml3azbB-mC-hs_kSj3NDPPjPwwht5yNOGdmvJnPRoIJMZKCCynVGRnwLFOJydP8nAwY4zoxUstLchXCNo55mooB6WcY7JujU--CrbGFzsaOgqvpSw-u6_d_q8Y63KPr6LxpsOqodfTJO7-z3but6M93ssTxyh2XwJPjJNA1OB8q2CFdWLeYbwKd-U9HO0_XGV37Gq_JRQO7gDf_dUheI5s-JI_Py9V08phYnjOVcMNLA7WGMn6hRM2yUgGXWCHUDAArlnKlTZWlqtLapIo3RnOVZlDmeQ65HJL7U-6h9R89hq7Y-r518WQhIuMyprKo7k7KImJxaO0e2q_CmEi0kb__I2Xo</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Joshi, Rutwik</creator><creator>Karthikeyan, Sengunthar</creator><creator>Hudait, Mantu K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0559-3477</orcidid><orcidid>https://orcid.org/0000-0002-9789-3081</orcidid></search><sort><creationdate>20221201</creationdate><title>Design Considerations and Quantum Confinement Effect in Monolithic ε-Ge/InxGa1-xAs Nanoscale FinFETs Down to N5 Node</title><author>Joshi, Rutwik ; Karthikeyan, Sengunthar ; Hudait, Mantu K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1607-191b9ad8ab96472d05b7a13ecead0aaec041789c547c889471f981745ab666a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aspect ratio</topic><topic>CMOS</topic><topic>Composition</topic><topic>confinement (QC)</topic><topic>Doping</topic><topic>FinFETs</topic><topic>Germanium</topic><topic>Hybrid systems</topic><topic>Lattice matching</topic><topic>Leakage current</topic><topic>Nanoscale devices</topic><topic>Optoelectronics</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Photonic band gap</topic><topic>Quantum confinement</topic><topic>Tensile strain</topic><topic>tensile strained germanium</topic><topic>Threshold voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joshi, Rutwik</creatorcontrib><creatorcontrib>Karthikeyan, Sengunthar</creatorcontrib><creatorcontrib>Hudait, Mantu K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joshi, Rutwik</au><au>Karthikeyan, Sengunthar</au><au>Hudait, Mantu K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Considerations and Quantum Confinement Effect in Monolithic ε-Ge/InxGa1-xAs Nanoscale FinFETs Down to N5 Node</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>69</volume><issue>12</issue><spage>6616</spage><epage>6623</epage><pages>6616-6623</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[In this work, we have studied the effect of material parameters (indium (In) composition and doping), geometrical parameters [channel length <inline-formula> <tex-math notation="LaTeX">{L} </tex-math></inline-formula>, fin width <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>, aspect ratio (AR)], and quantum confinement (QC) on the performance and operability of a <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula>-Ge /InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As hybrid CMOS system. In this system, the In compositional InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As and tensile-strained Ge (<inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula>-Ge) grown on the InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As layer were used as n- and p-channel FinFETs, respectively. The In composition in InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As layer (lattice matched with graded InxAl<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As buffer) determines the amount of tensile strain in Ge. This hybrid system utilizes the benefits of metamorphic (InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As/InxAl<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As) as well as pseudomorphic (<inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula>-Ge/InxGa<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>As) heteroepitaxy to create high-performance tunable complementary devices, suitable for 0.5 V CMOS operation. The device metrics such as, threshold voltage, ON-current (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {on}} </tex-math></inline-formula>), OFF-current (<inline-formula> <tex-math notation="LaTeX">{I}_{\text {off}} </tex-math></inline-formula>), subthreshold-swing (SS), and drain-induced barrier lowering (DIBL), and their dependence on material and geometrical parameters were evaluated using self-consistent analytical solvers scaled down to the N5 node. At these scaled dimensions, this hybrid system demonstrated ultralow leakage current and SS for the n-FinFET and p-FinFET of 10 pA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, 27 nA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>, 85, and 95 mV/dec, respectively. With the effect of QC, we identify a transition fin width (<inline-formula> <tex-math notation="LaTeX">{W}_{T} </tex-math></inline-formula>) associated with scaling of alternate channel FinFETs, at which the performance is optimum and below <inline-formula> <tex-math notation="LaTeX">{W}_{T} </tex-math></inline-formula>, the benefits of scaling are diminished. Moreover, this hybrid system has a potential to find applications in optoelectronic and RF systems as well as high-performance computing.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3212337</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0559-3477</orcidid><orcidid>https://orcid.org/0000-0002-9789-3081</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2022-12, Vol.69 (12), p.6616-6623
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2745134720
source IEEE Xplore (Online service)
subjects Aspect ratio
CMOS
Composition
confinement (QC)
Doping
FinFETs
Germanium
Hybrid systems
Lattice matching
Leakage current
Nanoscale devices
Optoelectronics
Parameters
Performance evaluation
Photonic band gap
Quantum confinement
Tensile strain
tensile strained germanium
Threshold voltage
title Design Considerations and Quantum Confinement Effect in Monolithic ε-Ge/InxGa1-xAs Nanoscale FinFETs Down to N5 Node
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Considerations%20and%20Quantum%20Confinement%20Effect%20in%20Monolithic%20%CE%B5-Ge/InxGa1-xAs%20Nanoscale%20FinFETs%20Down%20to%20N5%20Node&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Joshi,%20Rutwik&rft.date=2022-12-01&rft.volume=69&rft.issue=12&rft.spage=6616&rft.epage=6623&rft.pages=6616-6623&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3212337&rft_dat=%3Cproquest_ieee_%3E2745134720%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1607-191b9ad8ab96472d05b7a13ecead0aaec041789c547c889471f981745ab666a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2745134720&rft_id=info:pmid/&rft_ieee_id=9927489&rfr_iscdi=true