Loading…

Robust Arrhythmia Classification Based on QRS Detection and a Compact 1D-CNN for Wearable ECG Devices

Embedded arrhythmia classification is the first step towards heart diseases prevention in wearable applications. In this paper, a robust arrhythmia classification algorithm, NEO-CCNN, for wearables that can be implemented on a simple microcontroller is proposed. The NEO-CCNN algorithm not only detec...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2022-12, Vol.26 (12), p.5918-5929
Main Authors: Sabor, Nabil, Gendy, Garas, Mohammed, Hazem, Wang, Guoxing, Lian, Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Embedded arrhythmia classification is the first step towards heart diseases prevention in wearable applications. In this paper, a robust arrhythmia classification algorithm, NEO-CCNN, for wearables that can be implemented on a simple microcontroller is proposed. The NEO-CCNN algorithm not only detects QRS complex but also accurately locates R-peak with the help of the proposed adaptive time-dependent thresholding technique, improving the accuracy and sensitivity in arrhythmia classification. An optimized compact 1D-CNN network (CCNN) with 9,701 parameters is used for classification. A QRS complex augmentation method is introduced in the training process to cater for R-peak location error (RLE). A nested k 1 k 2 -fold cross-validation method is utilized to evaluate the robustness of the proposed algorithm. Simulation results show that the proposed algorithm has the ability to detect more than 99.79% of R peaks with an RLE of 7.94 ms for the MIT-BIH database. Implemented on the STM32F407 microcontroller, NEO-CNN attains a classification accuracy of 97.83% and sensitivity of 96.46% using only 8s window size.
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2022.3207456