Loading…
Cohomology and the controlling algebra of crossed homomorphisms on 3-Lie algebras
In this paper, first we give the notion of a crossed homomorphism on a 3-Lie algebra with respect to an action on another 3-Lie algebra, and characterize it using a homomorphism from a Lie algebra to the semidirect product Lie algebra. We also establish the relationship between crossed homomorphisms...
Saved in:
Published in: | arXiv.org 2022-12 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, first we give the notion of a crossed homomorphism on a 3-Lie algebra with respect to an action on another 3-Lie algebra, and characterize it using a homomorphism from a Lie algebra to the semidirect product Lie algebra. We also establish the relationship between crossed homomorphisms and relative Rota-Baxter operators of weight 1 on 3-Lie algebras. Next we construct a cohomology theory for a crossed homomorphism on 3-Lie algebras and classify infinitesimal deformations of crossed homomorphisms using the second cohomology group. Finally, using the higher derived brackets, we construct an \(L_\infty\)-algebra whose Maurer-Cartan elements are crossed homomorphisms. Consequently, we obtain the twisted \(L_\infty\)-algebra that controls deformations of a given crossed homomorphism on 3-Lie algebras. |
---|---|
ISSN: | 2331-8422 |