Loading…
Ring-Exchange Interaction Effects on Magnons in Dirac Magnet CoTiO\(_3\)
The magnetic interactions that determine magnetic order and magnon energies typically involve only two spins. While rare, multi-spin interactions can also appear in quantum magnets and be the driving force in the ground state selection and in the nature of its excitations. By performing time-domain...
Saved in:
Published in: | arXiv.org 2024-06 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The magnetic interactions that determine magnetic order and magnon energies typically involve only two spins. While rare, multi-spin interactions can also appear in quantum magnets and be the driving force in the ground state selection and in the nature of its excitations. By performing time-domain terahertz and magneto-Raman spectroscopy measurements combined with theoretical modeling, we determine the origin of the magnon excitation gap in Dirac antiferromagnet CoTiO\(_3\). By adding a ring-exchange interaction in a hexagonal plaquette of the honeycomb lattice to both an XXZ spin model and to a low energy spin-orbital flavor wave model, a gap is generated in the magnon spectrum at the Brillouin zone center. With this addition, the flavor wave model reproduces a large swath of experimental results including terahertz, Raman, inelastic neutron scattering, and magnetization experiments. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2212.05278 |