Loading…

Global well‐posedness for the generalized Navier‐Stokes‐Coriolis equations with highly oscillating initial data

We study the small initial date Cauchy problem for the generalized incompressible Navier‐Stokes‐Coriolis equations in critical hybrid‐Besov space ℬ˙2,p52−2α,3p−2α+1(ℝ3)$$ {\dot{\mathcal{B}}}_{2,p}^{\frac{5}{2}-2\alpha, \frac{3}{p}-2\alpha +1}\left({\ma...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2023-01, Vol.46 (1), p.715-731
Main Authors: Sun, Xiaochun, Liu, Mixiu, Zhang, Jihong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the small initial date Cauchy problem for the generalized incompressible Navier‐Stokes‐Coriolis equations in critical hybrid‐Besov space ℬ˙2,p52−2α,3p−2α+1(ℝ3)$$ {\dot{\mathcal{B}}}_{2,p}^{\frac{5}{2}-2\alpha, \frac{3}{p}-2\alpha +1}\left({\mathbb{R}}^3\right) $$ with 1/2
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.8541