Loading…
Global well‐posedness for the generalized Navier‐Stokes‐Coriolis equations with highly oscillating initial data
We study the small initial date Cauchy problem for the generalized incompressible Navier‐Stokes‐Coriolis equations in critical hybrid‐Besov space ℬ˙2,p52−2α,3p−2α+1(ℝ3)$$ {\dot{\mathcal{B}}}_{2,p}^{\frac{5}{2}-2\alpha, \frac{3}{p}-2\alpha +1}\left({\ma...
Saved in:
Published in: | Mathematical methods in the applied sciences 2023-01, Vol.46 (1), p.715-731 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the small initial date Cauchy problem for the generalized incompressible Navier‐Stokes‐Coriolis equations in critical hybrid‐Besov space
ℬ˙2,p52−2α,3p−2α+1(ℝ3)$$ {\dot{\mathcal{B}}}_{2,p}^{\frac{5}{2}-2\alpha, \frac{3}{p}-2\alpha +1}\left({\mathbb{R}}^3\right) $$ with
1/2 |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.8541 |