Loading…
Learning by reusing previous advice: a memory-based teacher–student framework
Reinforcement Learning (RL) has been widely used to solve sequential decision-making problems. However, it often suffers from slow learning speed in complex scenarios. Teacher–student frameworks address this issue by enabling agents to ask for and give advice so that a student agent can leverage the...
Saved in:
Published in: | Autonomous agents and multi-agent systems 2023-06, Vol.37 (1), Article 14 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reinforcement Learning (RL) has been widely used to solve sequential decision-making problems. However, it often suffers from slow learning speed in complex scenarios. Teacher–student frameworks address this issue by enabling agents to ask for and give advice so that a student agent can leverage the knowledge of a teacher agent to facilitate its learning. In this paper, we consider the effect of reusing previous advice, and propose a novel memory-based teacher–student framework such that student agents can memorize and reuse the previous advice from teacher agents. In particular, we propose two methods to decide whether previous advice should be reused:
Q-Change per Step
that reuses the advice if it leads to an increase in Q-values, and
Decay Reusing Probability
that reuses the advice with a decaying probability. The experiments on diverse RL tasks (Mario, Predator–Prey and Half Field Offense) confirm that our proposed framework significantly outperforms the existing frameworks in which previous advice is not reused. |
---|---|
ISSN: | 1387-2532 1573-7454 |
DOI: | 10.1007/s10458-022-09595-1 |