Loading…

Algebraic Wasserstein distances and stable homological invariants of data

Distances have a ubiquitous role in persistent homology, from the direct comparison of homological representations of data to the definition and optimization of invariants. In this article we introduce a family of parametrized pseudometrics between persistence modules based on the algebraic Wasserst...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-08
Main Authors: Agerberg, Jens, Guidolin, Andrea, Ren, Isaac, Scolamiero, Martina
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Distances have a ubiquitous role in persistent homology, from the direct comparison of homological representations of data to the definition and optimization of invariants. In this article we introduce a family of parametrized pseudometrics between persistence modules based on the algebraic Wasserstein distance defined by Skraba and Turner, and phrase them in the formalism of noise systems. This is achieved by comparing \(p\)-norms of cokernels (resp. kernels) of monomorphisms (resp. epimorphisms) between persistence modules and corresponding bar-to-bar morphisms, a novel notion that allows us to bridge between algebraic and combinatorial aspects of persistence modules. We use algebraic Wasserstein distances to define invariants, called Wasserstein stable ranks, which are 1-Lipschitz stable with respect to such pseudometrics. We prove a low-rank approximation result for persistence modules which allows us to efficiently compute Wasserstein stable ranks, and we propose an efficient algorithm to compute the interleaving distance between them. Importantly, Wasserstein stable ranks depend on interpretable parameters which can be learnt in a machine learning context. Experimental results illustrate the use of Wasserstein stable ranks on real and artificial data and highlight how such pseudometrics could be useful in data analysis tasks.
ISSN:2331-8422