Loading…
Harnack's inequality for degenerate double phase parabolic equations under the non-logarithmic Zhikov's condition
We prove Harnack's type inequalities for bounded non-negative solutions of degenerate parabolic equations with \((p,q)\) growth $$ u_{t}-{\rm div}\left(\mid \nabla u \mid^{p-2}\nabla u + a(x,t) \mid \nabla u \mid^{q-2}\nabla u \right)=0,\quad a(x,t) \geq 0 , $$ under the generalized non-logarit...
Saved in:
Published in: | arXiv.org 2023-04 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove Harnack's type inequalities for bounded non-negative solutions of degenerate parabolic equations with \((p,q)\) growth $$ u_{t}-{\rm div}\left(\mid \nabla u \mid^{p-2}\nabla u + a(x,t) \mid \nabla u \mid^{q-2}\nabla u \right)=0,\quad a(x,t) \geq 0 , $$ under the generalized non-logarithmic Zhikovs conditions $$ \mid a(x,t)-a(y,\tau)\mid \leqslant A\mu(r) r^{q-p},\quad (x,t),(y,\tau)\in Q_{r,r}(x_{0},t_{0}),$$ $$\lim\limits_{r\rightarrow 0}\mu(r) r^{q-p}=0,\quad \lim\limits_{r\rightarrow 0}\mu(r)=+\infty,\quad \int\limits_{0} \mu^{-\beta}(r)\frac{dr}{r} =+\infty,$$ with some \(\beta >0\). |
---|---|
ISSN: | 2331-8422 |