Loading…

Externally-triggerable optical pump-probe scanning tunneling microscopy with a time resolution of tens-picosecond

Photoinduced carrier dynamics of nanostructures play a crucial role in developing novel functionalities in advanced materials. Optical pump-probe scanning tunneling microscopy (OPP-STM) represents distinctive capabilities of real-space imaging of such carrier dynamics with nanoscale spatial resoluti...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2023-01, Vol.13 (1), p.818, Article 818
Main Authors: Iwaya, Katsuya, Yokota, Munenori, Hanada, Hiroaki, Mogi, Hiroyuki, Yoshida, Shoji, Takeuchi, Osamu, Miyatake, Yutaka, Shigekawa, Hidemi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photoinduced carrier dynamics of nanostructures play a crucial role in developing novel functionalities in advanced materials. Optical pump-probe scanning tunneling microscopy (OPP-STM) represents distinctive capabilities of real-space imaging of such carrier dynamics with nanoscale spatial resolution. However, combining the advanced technology of ultrafast pulsed lasers with STM for stable time-resolved measurements has remained challenging. The recent OPP-STM system, whose laser-pulse timing is electrically controlled by external triggers, has significantly simplified this combination but limited its application due to nanosecond temporal resolution. Here we report an externally-triggerable OPP-STM system with a temporal resolution in the tens-picosecond range. We also realize the stable laser illumination of the tip-sample junction by placing a position-movable aspheric lens driven by piezo actuators directly on the STM stage and by employing an optical beam stabilization system. We demonstrate the OPP-STM measurements on GaAs(110) surfaces, observing carrier dynamics with a decay time of ∼ 170  ps and revealing local carrier dynamics at features including a step edge and a nanoscale defect. The stable OPP-STM measurements with the tens-picosecond resolution by the electrical control of laser pulses highlight the potential capabilities of this system for investigating nanoscale carrier dynamics of a wide range of functional materials.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-27383-z