Loading…
Effects of postharvest deficit irrigation on sweet cherry (Prunus avium) in five Okanagan Valley, Canada, orchards: I. Tree water status, photosynthesis, and growth
The timing and availability of water supply are changing in the Okanagan Valley, and the availability of irrigation water in the late summers is a growing concern. Postharvest deficit irrigation (PDI) is a strategy that can be used to reduce water demands in sweet cherry orchards; previous studies i...
Saved in:
Published in: | Canadian journal of plant science 2022-11, Vol.103 (1), p.73-92 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The timing and availability of water supply are changing in the Okanagan Valley, and the availability of irrigation water in the late summers is a growing concern. Postharvest deficit irrigation (PDI) is a strategy that can be used to reduce water demands in sweet cherry orchards; previous studies in this region have reported no change in plant physiology or tree growth with irrigation volume reductions of up to 25%, postharvest. However, the effects of more severe postharvest reductions in irrigation volume remain unknown. We compared the effects of full irrigation (100% of conventional grower practice through the growing season) with 27%–33% reductions in irrigation postharvest (∼70% of conventional grower practice) and 47%–52% reductions in irrigation postharvest (∼50% of conventional grower practice) over a 3-year period (2019–2021) in five commercial sweet cherry orchards that ranged in elevation and latitude across the Okanagan Valley, BC, Canada. In the growing season following treatment application, PDI had no effect on stem water potential or photosynthesis in any year and at any site; there were also no effects of PDI treatment on tree growth. Findings from this study suggest that postharvest stem water potentials from −0.5 to −1.3 MPa, and one-time stem water potentials as low as −2.0 MPa, have no lasting effects on future plant water status, rates of photosynthesis, or plant growth. PDI shows potential as an effective water-saving measure in sweet cherry orchards in the Okanagan Valley. |
---|---|
ISSN: | 0008-4220 1918-1833 |
DOI: | 10.1139/cjps-2022-0200 |