Loading…

Effect of Increasing Assistance from a Powered Prosthesis on Weight-Bearing Symmetry, Effort, and Speed during Stand-Up in Individuals with Above-Knee Amputation

After above-knee amputation, the missing biological knee and ankle are commonly replaced with a passive prosthesis, which cannot provide net-positive energy to assist the user. During activities such as sit-to-stand, above-knee amputees must compensate for this lack of power using their upper body,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2023-01, Vol.31, p.1-1
Main Authors: Hunt, Grace R., Hood, Sarah, Gabert, Lukas, Lenzi, Tommaso
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:After above-knee amputation, the missing biological knee and ankle are commonly replaced with a passive prosthesis, which cannot provide net-positive energy to assist the user. During activities such as sit-to-stand, above-knee amputees must compensate for this lack of power using their upper body, intact limb, and residual limb, resulting in slower, less symmetric, and higher effort movements. Previous studies have shown that powered prostheses can improve symmetry and speed by providing positive assistive power. However, we still lack a systematic investigation of the effect of powered prosthesis assistance. Without this knowledge, researchers and clinicians have no framework for tuning powered prostheses to optimally assist users. Here we show that varying the assistive knee torque significantly affected weight-bearing symmetry, effort, and speed during the stand-up movement in eight above-knee amputees. Specifically, we observed improvements in the index of asymmetry of the vertical ground reaction force at the point approximating maximum vertical center of mass acceleration, the integral of the intact vastus medialis activation measured using electromyography, and the stand-up duration compared to the passive prosthesis. We saw significant improvements in all three metrics when subjects used the powered prosthesis compared to the passive prosthesis. We saw improvements in all three metrics with increasing assistive torque levels commanded by the powered prosthesis. We also observed increased weight-bearing asymmetry at the end of movement, and increased kinematic asymmetry with increasing assistance from the powered prosthesis. These results show that powered prostheses can improve functional mobility, potentially increasing quality of life for millions of people living with above-knee amputations.
ISSN:1534-4320
1558-0210
DOI:10.1109/TNSRE.2022.3214806