Loading…
Aubin property for solution set in multi-objective programming
In this paper, the behavior of the solutions of a multi-objective optimization problem, whose the objective functions are perturbed by adding a small linear term, is analyzed. In this regard, a new notion of Lipschitzian stability, by means of the Aubin property of the solution set, is defined. Lips...
Saved in:
Published in: | Journal of global optimization 2023-02, Vol.85 (2), p.441-460 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the behavior of the solutions of a multi-objective optimization problem, whose the objective functions are perturbed by adding a small linear term, is analyzed. In this regard, a new notion of Lipschitzian stability, by means of the Aubin property of the solution set, is defined. Lipschitz stable locally efficient solutions, as generalization of tilt/full stable solutions, are introduced and characterized by modern variational analysis tools. Applying the weighted sum method, the relationships between these solutions and full-stable local optimal solutions of the scalarized problem are investigated. The key tools in deriving our results come from the first- and second-order variational analysis. |
---|---|
ISSN: | 0925-5001 1573-2916 |
DOI: | 10.1007/s10898-022-01209-0 |