Loading…
Doob’s maximal inequality and Burkholder–Davis–Gundy’s inequality on Musielak–Orlicz spaces
Given a probability space ( Ω , F , P ) and an unbounded Musielak–Orlicz function φ : Ω × [ 0 , ∞ ) → [ 0 , ∞ ] , the authors establish Doob’s maximal inequality and weak type Doob’s maximal inequality on the Musielak–Orlicz space L φ ( Ω ) . This result can be seen as a probabilistic counterpart of...
Saved in:
Published in: | Mathematische Zeitschrift 2023-03, Vol.303 (3), Article 53 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Given a probability space
(
Ω
,
F
,
P
)
and an unbounded Musielak–Orlicz function
φ
:
Ω
×
[
0
,
∞
)
→
[
0
,
∞
]
, the authors establish Doob’s maximal inequality and weak type Doob’s maximal inequality on the Musielak–Orlicz space
L
φ
(
Ω
)
. This result can be seen as a probabilistic counterpart of the analogue result in harmonic analysis proved by Hästö (J Funct Anal 269: 4038–4048, 2015). Using Doob’s maximal inequality and establishing the Davis decomposition for martingale Musielak–Orlicz Hardy spaces, the authors further prove Burkholder–Davis–Gundy’s inequality for the space
L
φ
(
Ω
)
. As applications, the authors obtain Doob’s maximal inequality and Burkholder–Davis–Gundy’s inequality for the Musielak–Orlicz function
φ
(
x
,
t
)
with particular structure, including the variable Orlicz functions
Φ
(
t
p
(
x
)
)
and
[
Φ
(
t
)
]
p
(
x
)
, the perturbed variable exponent function
t
p
(
x
)
log
(
e
+
t
)
, and the variable double phase-growth
t
p
(
x
)
+
a
(
x
)
t
q
(
x
)
, which are completely new. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-023-03221-w |