Loading…

Doob’s maximal inequality and Burkholder–Davis–Gundy’s inequality on Musielak–Orlicz spaces

Given a probability space ( Ω , F , P ) and an unbounded Musielak–Orlicz function φ : Ω × [ 0 , ∞ ) → [ 0 , ∞ ] , the authors establish Doob’s maximal inequality and weak type Doob’s maximal inequality on the Musielak–Orlicz space L φ ( Ω ) . This result can be seen as a probabilistic counterpart of...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Zeitschrift 2023-03, Vol.303 (3), Article 53
Main Authors: He, Lechen, Long, Long, Xie, Guangheng, Yang, Dachun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given a probability space ( Ω , F , P ) and an unbounded Musielak–Orlicz function φ : Ω × [ 0 , ∞ ) → [ 0 , ∞ ] , the authors establish Doob’s maximal inequality and weak type Doob’s maximal inequality on the Musielak–Orlicz space L φ ( Ω ) . This result can be seen as a probabilistic counterpart of the analogue result in harmonic analysis proved by Hästö (J Funct Anal 269: 4038–4048, 2015). Using Doob’s maximal inequality and establishing the Davis decomposition for martingale Musielak–Orlicz Hardy spaces, the authors further prove Burkholder–Davis–Gundy’s inequality for the space L φ ( Ω ) . As applications, the authors obtain Doob’s maximal inequality and Burkholder–Davis–Gundy’s inequality for the Musielak–Orlicz function φ ( x , t ) with particular structure, including the variable Orlicz functions Φ ( t p ( x ) ) and [ Φ ( t ) ] p ( x ) , the perturbed variable exponent function t p ( x ) log ( e + t ) , and the variable double phase-growth t p ( x ) + a ( x ) t q ( x ) , which are completely new.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-023-03221-w