Loading…

Opportunities and challenges in integrating 2D materials with inorganic 1D and 0D layered nanostructures

The birth of nanoscience more than 50 years ago fueled the renaissance in layered materials research leading to many materials discoveries with unprecedented scientific and technological impacts. Following the early reports on carbon fullerenes and nanotubes, the discovery of inorganic one-dimension...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2023-01, Vol.38 (2), p.267-280
Main Authors: Chowdhury, Tomojit, Tenne, Reshef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The birth of nanoscience more than 50 years ago fueled the renaissance in layered materials research leading to many materials discoveries with unprecedented scientific and technological impacts. Following the early reports on carbon fullerenes and nanotubes, the discovery of inorganic one-dimensional (1D) nanotubes and zero-dimensional (0D) fullerenes created a major playground for new physicochemical observations. The meteoric rise of two-dimensional (2D) materials in concert set off outstanding advances in the synthesis and manipulation of layered materials with atomic precision. This review identifies new directions in materials science that emerge through integrating the two layered systems—2D with inorganic 1D and 0D. Summarizing the key developments in the two distinct nanomaterials families, we highlight preliminary instances of integrating them into functional nanostructures. A few gedankenexperiments regarding prospective applications of the integrated system are then introduced to stimulate further experimental and theoretical investigations that can potentially result in unforeseen scientific observations. Graphical abstract
ISSN:0884-2914
2044-5326
DOI:10.1557/s43578-022-00843-4