Loading…
Solving Vertex Cover in Polynomial Time on Hyperbolic Random Graphs
The computational complexity of the VertexCover problem has been studied extensively. Most notably, it is NP-complete to find an optimal solution and typically NP-hard to find an approximation with reasonable factors. In contrast, recent experiments suggest that on many real-world networks the run t...
Saved in:
Published in: | Theory of computing systems 2023-02, Vol.67 (1), p.28-51 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The computational complexity of the
VertexCover
problem has been studied extensively. Most notably, it is NP-complete to find an optimal solution and typically NP-hard to find an approximation with reasonable factors. In contrast, recent experiments suggest that on many real-world networks the run time to solve
VertexCover
is way smaller than even the best known FPT-approaches can explain. We link these observations to two properties that are observed in many real-world networks, namely a heterogeneous degree distribution and high clustering. To formalize these properties and explain the observed behavior, we analyze how a branch-and-reduce algorithm performs on hyperbolic random graphs, which have become increasingly popular for modeling real-world networks. In fact, we are able to show that the
VertexCover
problem on hyperbolic random graphs can be solved in polynomial time, with high probability. The proof relies on interesting structural properties of hyperbolic random graphs. Since these predictions of the model are interesting in their own right, we conducted experiments on real-world networks showing that these properties are also observed in practice. |
---|---|
ISSN: | 1432-4350 1433-0490 |
DOI: | 10.1007/s00224-021-10062-9 |