Loading…
Chance-constrained set covering with Wasserstein ambiguity
We study a generalized distributionally robust chance-constrained set covering problem (DRC) with a Wasserstein ambiguity set, where both decisions and uncertainty are binary-valued. We establish the NP-hardness of DRC and recast it as a two-stage stochastic program, which facilitates decomposition...
Saved in:
Published in: | Mathematical programming 2023-03, Vol.198 (1), p.621-674 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study a generalized distributionally robust chance-constrained set covering problem (DRC) with a Wasserstein ambiguity set, where both decisions and uncertainty are binary-valued. We establish the NP-hardness of DRC and recast it as a two-stage stochastic program, which facilitates decomposition algorithms. Furthermore, we derive two families of valid inequalities. The first family targets the hypograph of a “shifted” submodular function, which is associated with each scenario of the two-stage reformulation. We show that the valid inequalities give a complete description of the convex hull of the hypograph. The second family mixes inequalities across multiple scenarios and gains further strength via lifting. Our numerical experiments demonstrate the out-of-sample performance of the DRC model and the effectiveness of our proposed reformulation and valid inequalities. |
---|---|
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-022-01788-6 |