Loading…
CUNTZ–KRIEGER ALGEBRAS AND ONE-SIDED CONJUGACY OF SHIFTS OF FINITE TYPE AND THEIR GROUPOIDS
A one-sided shift of finite type $(\mathsf{X}_{A},\unicode[STIX]{x1D70E}_{A})$ determines on the one hand a Cuntz–Krieger algebra ${\mathcal{O}}_{A}$ with a distinguished abelian subalgebra ${\mathcal{D}}_{A}$ and a certain completely positive map $\unicode[STIX]{x1D70F}_{A}$ on ${\mathcal{O}}_{A}$...
Saved in:
Published in: | Journal of the Australian Mathematical Society (2001) 2020-12, Vol.109 (3), p.289-298 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A one-sided shift of finite type
$(\mathsf{X}_{A},\unicode[STIX]{x1D70E}_{A})$
determines on the one hand a Cuntz–Krieger algebra
${\mathcal{O}}_{A}$
with a distinguished abelian subalgebra
${\mathcal{D}}_{A}$
and a certain completely positive map
$\unicode[STIX]{x1D70F}_{A}$
on
${\mathcal{O}}_{A}$
. On the other hand,
$(\mathsf{X}_{A},\unicode[STIX]{x1D70E}_{A})$
determines a groupoid
${\mathcal{G}}_{A}$
together with a certain homomorphism
$\unicode[STIX]{x1D716}_{A}$
on
${\mathcal{G}}_{A}$
. We show that each of these two sets of data completely characterizes the one-sided conjugacy class of
$\mathsf{X}_{A}$
. This strengthens a result of Cuntz and Krieger. We also exhibit an example of two irreducible shifts of finite type which are eventually conjugate but not conjugate. This provides a negative answer to a question of Matsumoto of whether eventual conjugacy implies conjugacy. |
---|---|
ISSN: | 1446-7887 1446-8107 |
DOI: | 10.1017/S1446788719000168 |