Loading…
ZERO JORDAN PRODUCT DETERMINED BANACH ALGEBRAS
A Banach algebra $A$ is said to be a zero Jordan product determined Banach algebra if, for every Banach space $X$ , every bilinear map $\unicode[STIX]{x1D711}:A\times A\rightarrow X$ satisfying $\unicode[STIX]{x1D711}(a,b)=0$ whenever $a$ , $b\in A$ are such that $ab+ba=0$ , is of the form $\unicode...
Saved in:
Published in: | Journal of the Australian Mathematical Society (2001) 2021-10, Vol.111 (2), p.145-158 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A Banach algebra
$A$
is said to be a zero Jordan product determined Banach algebra if, for every Banach space
$X$
, every bilinear map
$\unicode[STIX]{x1D711}:A\times A\rightarrow X$
satisfying
$\unicode[STIX]{x1D711}(a,b)=0$
whenever
$a$
,
$b\in A$
are such that
$ab+ba=0$
, is of the form
$\unicode[STIX]{x1D711}(a,b)=\unicode[STIX]{x1D70E}(ab+ba)$
for some continuous linear map
$\unicode[STIX]{x1D70E}$
. We show that all
$C^{\ast }$
-algebras and all group algebras
$L^{1}(G)$
of amenable locally compact groups have this property and also discuss some applications. |
---|---|
ISSN: | 1446-7887 1446-8107 |
DOI: | 10.1017/S1446788719000478 |