Loading…

An Automotive Reference Testbed with Trusted Security Services

While research in the field of automotive systems inclined in the past years towards technologies such as Vehicle-to-Everything (V2X) or Connected and Automated Vehicle (CAV), the underlying system security still plays a crucial role in assuring trust and system safety. The work at hand tackles the...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2023-02, Vol.12 (4), p.888
Main Authors: Lenard, Teri, Genge, Béla, Haller, Piroska, Collen, Anastasija, Nijdam, Niels Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While research in the field of automotive systems inclined in the past years towards technologies such as Vehicle-to-Everything (V2X) or Connected and Automated Vehicle (CAV), the underlying system security still plays a crucial role in assuring trust and system safety. The work at hand tackles the issue of automotive system security by designing a multi-service security system specially tailored for in-vehicle networks. The proposed trusted security services leverage Trusted Platform Module (TPM) to store secrets and manage and exchange cryptographic keys. To showcase how security services can be implemented in a in-vehicle network, a Reference TestBed (RTB) was developed. In the RTB, encryption and authentication keys are periodically exchanged, data is sent authenticated, the network is monitored by a Stateful Firewall and Intrusion Detection System (SF/IDS), and security events are logged and reported. A formal individual and multi-protocol analysis was conducted to demonstrated the feasibility of the proposed services from a theoretical point of view. Two distinct scenarios were considered to present the workflow and interaction between the proposed services. Lastly, performance measurements on the reference hardware are provided.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics12040888