Loading…
Data Structures for Geometric and Topological Aspects of Finite Element Algorithms
This paper uses simplicial complexes and simplicial (co)homology theory to expose a foundation for data structures for tetrahedral finite element meshes. Identifying tetrahedral meshes with simplicial complexes leads, by means of Whitney forms, to the connection between simplicial cochains and field...
Saved in:
Published in: | Electromagnetic waves (Cambridge, Mass.) Mass.), 2001, Vol.32, p.151-169 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper uses simplicial complexes and simplicial (co)homology theory to expose a foundation for data structures for tetrahedral finite element meshes. Identifying tetrahedral meshes with simplicial complexes leads, by means of Whitney forms, to the connection between simplicial cochains and fields in the region modeled by the mesh. Furthermore, lumped field parameters are tied to matrices associated with simplicial (co)homology groups. The data structures described here are sparse, and the computational complexity of constructing them is O(n) where n is the number of vertices in the finite element mesh. Non-tetrahedral meshes can be handled by an equivalent theory. These considerations lead to a discrete form of Poincar´e duality which is a powerful tool for developing algorithms for topological computations on finite element meshes. This duality emerges naturally in the data structures. We indicate some practical applications of both data structures and underlying theory. |
---|---|
ISSN: | 1559-8985 1070-4698 1559-8985 |
DOI: | 10.2528/PIER00080106 |