Loading…
Two pairs of heteroclinic orbits coined in a new sub-quadratic Lorenz-like system
This paper reports a new 3D sub-quadratic Lorenz-like system and proves the existence of two pairs of heteroclinic orbits to two pairs of nontrivial equilibria and the origin, which are completely different from the existing ones to the unstable origin and a pair of stable nontrivial equilibria in t...
Saved in:
Published in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2023-03, Vol.96 (3), Article 28 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper reports a new 3D sub-quadratic Lorenz-like system and proves the existence of two pairs of heteroclinic orbits to two pairs of nontrivial equilibria and the origin, which are completely different from the existing ones to the unstable origin and a pair of stable nontrivial equilibria in the published literature. This motivates one to further explore it and dig out its other hidden dynamics: Hopf bifurcation, invariant algebraic surface, ultimate boundedness, singularly degenerate heteroclinic cycle and so on. Particularly, numerical simulation illustrates that the Lorenz-like chaotic attractors coexist with one saddle in the origin and two stable nontrivial equilibria, which are created through the broken infinitely many singularly degenerate heteroclinic cycles and explosions of normally hyperbolic stable foci
E
z
.
Graphical abstract |
---|---|
ISSN: | 1434-6028 1434-6036 |
DOI: | 10.1140/epjb/s10051-023-00491-5 |