Loading…
Properties of Position Matrices and Their Elections
We study the properties of elections that have a given position matrix (in such elections each candidate is ranked on each position by a number of voters specified in the matrix). We show that counting elections that generate a given position matrix is #P-complete. Consequently, sampling such electi...
Saved in:
Published in: | arXiv.org 2023-03 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the properties of elections that have a given position matrix (in such elections each candidate is ranked on each position by a number of voters specified in the matrix). We show that counting elections that generate a given position matrix is #P-complete. Consequently, sampling such elections uniformly at random seems challenging and we propose a simpler algorithm, without hard guarantees. Next, we consider the problem of testing if a given matrix can be implemented by an election with a certain structure (such as single-peakedness or group-separability). Finally, we consider the problem of checking if a given position matrix can be implemented by an election with a Condorcet winner. We complement our theoretical findings with experiments. |
---|---|
ISSN: | 2331-8422 |