Loading…
Compositions of random transpositions
LetY=(y1,y2, ...),y1≥y2≥..., be the list of sizes of the cycles in the composition ofcn transpositions on the set {1, 2, ...,n}. We prove that ifc>1/2 is constant andn → ∞, the distribution off(c)Y/n converges toPD(1), the Poisson-Dirichlet distribution with parameter 1, where the functionf is kn...
Saved in:
Published in: | Israel journal of mathematics 2005-01, Vol.147 (1), p.221-243 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | LetY=(y1,y2, ...),y1≥y2≥..., be the list of sizes of the cycles in the composition ofcn transpositions on the set {1, 2, ...,n}. We prove that ifc>1/2 is constant andn → ∞, the distribution off(c)Y/n converges toPD(1), the Poisson-Dirichlet distribution with parameter 1, where the functionf is known explicitly. A new proof is presented of the theorem by Diaconis, Mayer-Wolf, Zeitouni and Zerner stating that thePD(1) measure is the unique invariant measure for the uniform coagulation-fragmentation process. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/BF02785366 |