Loading…
Compositions of random transpositions
LetY=(y1,y2, ...),y1≥y2≥..., be the list of sizes of the cycles in the composition ofcn transpositions on the set {1, 2, ...,n}. We prove that ifc>1/2 is constant andn → ∞, the distribution off(c)Y/n converges toPD(1), the Poisson-Dirichlet distribution with parameter 1, where the functionf is kn...
Saved in:
Published in: | Israel journal of mathematics 2005-01, Vol.147 (1), p.221-243 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-cfe0da601f423fcbeaa1da41cbd34c07344392fb705d44e47424e82c09fe27863 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-cfe0da601f423fcbeaa1da41cbd34c07344392fb705d44e47424e82c09fe27863 |
container_end_page | 243 |
container_issue | 1 |
container_start_page | 221 |
container_title | Israel journal of mathematics |
container_volume | 147 |
creator | Schramm, Oded |
description | LetY=(y1,y2, ...),y1≥y2≥..., be the list of sizes of the cycles in the composition ofcn transpositions on the set {1, 2, ...,n}. We prove that ifc>1/2 is constant andn → ∞, the distribution off(c)Y/n converges toPD(1), the Poisson-Dirichlet distribution with parameter 1, where the functionf is known explicitly. A new proof is presented of the theorem by Diaconis, Mayer-Wolf, Zeitouni and Zerner stating that thePD(1) measure is the unique invariant measure for the uniform coagulation-fragmentation process. |
doi_str_mv | 10.1007/BF02785366 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786547217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786547217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-cfe0da601f423fcbeaa1da41cbd34c07344392fb705d44e47424e82c09fe27863</originalsourceid><addsrcrecordid>eNpFUM9LwzAYDaJgnV78CwriRej8vuRL0x21bDoYeNFzSNMEOmxTk-7gf2_HRE_v8B7vF2O3CEsEUI_PG-CqkqIsz1iGspRFJRHPWQbAseCo-CW7SmkPIIVCkbH7OvRjSN3UhSHlwefRDG3o82nG9EdcswtvPpO7-cUF-9is3-vXYvf2sq2fdoUVAFNhvYPWlICeuPC2ccZgawht0wqyoASRWHHfKJAtkSNFnFzFLay8m2uXYsHuTr5jDF8Hlya9D4c4zJH6yEtS84RZ9XBS2RhSis7rMXa9id8aQR9v0P83iB8mrE4N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786547217</pqid></control><display><type>article</type><title>Compositions of random transpositions</title><source>Springer Nature</source><creator>Schramm, Oded</creator><creatorcontrib>Schramm, Oded</creatorcontrib><description>LetY=(y1,y2, ...),y1≥y2≥..., be the list of sizes of the cycles in the composition ofcn transpositions on the set {1, 2, ...,n}. We prove that ifc>1/2 is constant andn → ∞, the distribution off(c)Y/n converges toPD(1), the Poisson-Dirichlet distribution with parameter 1, where the functionf is known explicitly. A new proof is presented of the theorem by Diaconis, Mayer-Wolf, Zeitouni and Zerner stating that thePD(1) measure is the unique invariant measure for the uniform coagulation-fragmentation process.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/BF02785366</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Coagulation ; Composition ; Dirichlet problem ; Mathematics</subject><ispartof>Israel journal of mathematics, 2005-01, Vol.147 (1), p.221-243</ispartof><rights>The Hebrew University Magnes Press 2005.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-cfe0da601f423fcbeaa1da41cbd34c07344392fb705d44e47424e82c09fe27863</citedby><cites>FETCH-LOGICAL-c300t-cfe0da601f423fcbeaa1da41cbd34c07344392fb705d44e47424e82c09fe27863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schramm, Oded</creatorcontrib><title>Compositions of random transpositions</title><title>Israel journal of mathematics</title><description>LetY=(y1,y2, ...),y1≥y2≥..., be the list of sizes of the cycles in the composition ofcn transpositions on the set {1, 2, ...,n}. We prove that ifc>1/2 is constant andn → ∞, the distribution off(c)Y/n converges toPD(1), the Poisson-Dirichlet distribution with parameter 1, where the functionf is known explicitly. A new proof is presented of the theorem by Diaconis, Mayer-Wolf, Zeitouni and Zerner stating that thePD(1) measure is the unique invariant measure for the uniform coagulation-fragmentation process.</description><subject>Coagulation</subject><subject>Composition</subject><subject>Dirichlet problem</subject><subject>Mathematics</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFUM9LwzAYDaJgnV78CwriRej8vuRL0x21bDoYeNFzSNMEOmxTk-7gf2_HRE_v8B7vF2O3CEsEUI_PG-CqkqIsz1iGspRFJRHPWQbAseCo-CW7SmkPIIVCkbH7OvRjSN3UhSHlwefRDG3o82nG9EdcswtvPpO7-cUF-9is3-vXYvf2sq2fdoUVAFNhvYPWlICeuPC2ccZgawht0wqyoASRWHHfKJAtkSNFnFzFLay8m2uXYsHuTr5jDF8Hlya9D4c4zJH6yEtS84RZ9XBS2RhSis7rMXa9id8aQR9v0P83iB8mrE4N</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Schramm, Oded</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050101</creationdate><title>Compositions of random transpositions</title><author>Schramm, Oded</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-cfe0da601f423fcbeaa1da41cbd34c07344392fb705d44e47424e82c09fe27863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Coagulation</topic><topic>Composition</topic><topic>Dirichlet problem</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schramm, Oded</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schramm, Oded</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compositions of random transpositions</atitle><jtitle>Israel journal of mathematics</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>147</volume><issue>1</issue><spage>221</spage><epage>243</epage><pages>221-243</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>LetY=(y1,y2, ...),y1≥y2≥..., be the list of sizes of the cycles in the composition ofcn transpositions on the set {1, 2, ...,n}. We prove that ifc>1/2 is constant andn → ∞, the distribution off(c)Y/n converges toPD(1), the Poisson-Dirichlet distribution with parameter 1, where the functionf is known explicitly. A new proof is presented of the theorem by Diaconis, Mayer-Wolf, Zeitouni and Zerner stating that thePD(1) measure is the unique invariant measure for the uniform coagulation-fragmentation process.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02785366</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2172 |
ispartof | Israel journal of mathematics, 2005-01, Vol.147 (1), p.221-243 |
issn | 0021-2172 1565-8511 |
language | eng |
recordid | cdi_proquest_journals_2786547217 |
source | Springer Nature |
subjects | Coagulation Composition Dirichlet problem Mathematics |
title | Compositions of random transpositions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compositions%20of%20random%20transpositions&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Schramm,%20Oded&rft.date=2005-01-01&rft.volume=147&rft.issue=1&rft.spage=221&rft.epage=243&rft.pages=221-243&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/BF02785366&rft_dat=%3Cproquest_cross%3E2786547217%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-cfe0da601f423fcbeaa1da41cbd34c07344392fb705d44e47424e82c09fe27863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786547217&rft_id=info:pmid/&rfr_iscdi=true |