Loading…
Gröbner bases and products of coefficient rings
Suppose that A is a finite direct product of commutative rings. We show from first principles that a Gröbner basis for an ideal of A[x1,…,xn] can be easily obtained by ‘joining’ Gröbner bases of the projected ideals with coefficients in the factors of A (which can themselves be obtained in parallel)...
Saved in:
Published in: | Bulletin of the Australian Mathematical Society 2002-02, Vol.65 (1), p.145-152 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Suppose that A is a finite direct product of commutative rings. We show from first principles that a Gröbner basis for an ideal of A[x1,…,xn] can be easily obtained by ‘joining’ Gröbner bases of the projected ideals with coefficients in the factors of A (which can themselves be obtained in parallel). Similarly for strong Gröbner bases. This gives an elementary method of constructing a (strong) Gröbner basis when the Chinese Remainder Theorem applies to the coefficient ring and we know how to compute (strong) Gröbner bases in each factor. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972700020165 |