Loading…

A FINITE-TO-ONE MAP FROM THE PERMUTATIONS ON A SET

Forster [‘Finite-to-one maps’, J. Symbolic Logic 68 (2003), 1251–1253] showed, in Zermelo–Fraenkel set theory, that if there is a finite-to-one map from ${\mathcal{P}}(A)$ , the set of all subsets of a set $A$ , onto $A$ , then $A$ must be finite. If we assume the axiom of choice (AC), the cardinali...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of the Australian Mathematical Society 2017-04, Vol.95 (2), p.177-182
Main Authors: SONPANOW, NATTAPON, VEJJAJIVA, PIMPEN
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c317t-f420caa2bc80aa3aa4ac44a325ebaf39dec71c22633befc92d703b158bf51b103
cites cdi_FETCH-LOGICAL-c317t-f420caa2bc80aa3aa4ac44a325ebaf39dec71c22633befc92d703b158bf51b103
container_end_page 182
container_issue 2
container_start_page 177
container_title Bulletin of the Australian Mathematical Society
container_volume 95
creator SONPANOW, NATTAPON
VEJJAJIVA, PIMPEN
description Forster [‘Finite-to-one maps’, J. Symbolic Logic 68 (2003), 1251–1253] showed, in Zermelo–Fraenkel set theory, that if there is a finite-to-one map from ${\mathcal{P}}(A)$ , the set of all subsets of a set $A$ , onto $A$ , then $A$ must be finite. If we assume the axiom of choice (AC), the cardinalities of ${\mathcal{P}}(A)$ and the set $S(A)$ of permutations on $A$ are equal for any infinite set $A$ . In the absence of AC, we cannot make any conclusion about the relationship between the two cardinalities for an arbitrary infinite set. In this paper, we give a condition that makes Forster’s theorem, with ${\mathcal{P}}(A)$ replaced by $S(A)$ , provable without AC.
doi_str_mv 10.1017/S0004972716000757
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786999272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972716000757</cupid><sourcerecordid>2786999272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-f420caa2bc80aa3aa4ac44a325ebaf39dec71c22633befc92d703b158bf51b103</originalsourceid><addsrcrecordid>eNp1UN1qwjAUDmODdW4PsLvArrPlJI1pL4vUWbCt2HhdkpgOZU6X6sXexmfxyWxR2MXY1TmH7-_wIfQM9BUoyLeKUhrGkkkYdpsU8gYFIIUgMOT8FgU9THr8Hj207bq7hGBRgMIEj7MiUylRJSmLFOfJDI_nZY7VJMWzdJ4vVKKysqhwWZyOyelYpeoR3TX6s3VP1zlAi3GqRhMyLd-zUTIlloPckyZk1GrNjI2o1lzrUNsw1JwJZ3TD46WzEixj3YfGNTZmS0m5ARGZRoABygfo5eK789vvg2v39Xp78F9dZM1kNIzjmEnWseDCsn7btt419c6vNtr_1EDrvpz6Tzmdhl81emP8avnhfq3_V50BVsph6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786999272</pqid></control><display><type>article</type><title>A FINITE-TO-ONE MAP FROM THE PERMUTATIONS ON A SET</title><source>Cambridge University Press</source><creator>SONPANOW, NATTAPON ; VEJJAJIVA, PIMPEN</creator><creatorcontrib>SONPANOW, NATTAPON ; VEJJAJIVA, PIMPEN</creatorcontrib><description>Forster [‘Finite-to-one maps’, J. Symbolic Logic 68 (2003), 1251–1253] showed, in Zermelo–Fraenkel set theory, that if there is a finite-to-one map from ${\mathcal{P}}(A)$ , the set of all subsets of a set $A$ , onto $A$ , then $A$ must be finite. If we assume the axiom of choice (AC), the cardinalities of ${\mathcal{P}}(A)$ and the set $S(A)$ of permutations on $A$ are equal for any infinite set $A$ . In the absence of AC, we cannot make any conclusion about the relationship between the two cardinalities for an arbitrary infinite set. In this paper, we give a condition that makes Forster’s theorem, with ${\mathcal{P}}(A)$ replaced by $S(A)$ , provable without AC.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972716000757</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Permutations ; Set theory</subject><ispartof>Bulletin of the Australian Mathematical Society, 2017-04, Vol.95 (2), p.177-182</ispartof><rights>2016 Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-f420caa2bc80aa3aa4ac44a325ebaf39dec71c22633befc92d703b158bf51b103</citedby><cites>FETCH-LOGICAL-c317t-f420caa2bc80aa3aa4ac44a325ebaf39dec71c22633befc92d703b158bf51b103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972716000757/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,72731</link.rule.ids></links><search><creatorcontrib>SONPANOW, NATTAPON</creatorcontrib><creatorcontrib>VEJJAJIVA, PIMPEN</creatorcontrib><title>A FINITE-TO-ONE MAP FROM THE PERMUTATIONS ON A SET</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>Forster [‘Finite-to-one maps’, J. Symbolic Logic 68 (2003), 1251–1253] showed, in Zermelo–Fraenkel set theory, that if there is a finite-to-one map from ${\mathcal{P}}(A)$ , the set of all subsets of a set $A$ , onto $A$ , then $A$ must be finite. If we assume the axiom of choice (AC), the cardinalities of ${\mathcal{P}}(A)$ and the set $S(A)$ of permutations on $A$ are equal for any infinite set $A$ . In the absence of AC, we cannot make any conclusion about the relationship between the two cardinalities for an arbitrary infinite set. In this paper, we give a condition that makes Forster’s theorem, with ${\mathcal{P}}(A)$ replaced by $S(A)$ , provable without AC.</description><subject>Permutations</subject><subject>Set theory</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UN1qwjAUDmODdW4PsLvArrPlJI1pL4vUWbCt2HhdkpgOZU6X6sXexmfxyWxR2MXY1TmH7-_wIfQM9BUoyLeKUhrGkkkYdpsU8gYFIIUgMOT8FgU9THr8Hj207bq7hGBRgMIEj7MiUylRJSmLFOfJDI_nZY7VJMWzdJ4vVKKysqhwWZyOyelYpeoR3TX6s3VP1zlAi3GqRhMyLd-zUTIlloPckyZk1GrNjI2o1lzrUNsw1JwJZ3TD46WzEixj3YfGNTZmS0m5ARGZRoABygfo5eK789vvg2v39Xp78F9dZM1kNIzjmEnWseDCsn7btt419c6vNtr_1EDrvpz6Tzmdhl81emP8avnhfq3_V50BVsph6w</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>SONPANOW, NATTAPON</creator><creator>VEJJAJIVA, PIMPEN</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201704</creationdate><title>A FINITE-TO-ONE MAP FROM THE PERMUTATIONS ON A SET</title><author>SONPANOW, NATTAPON ; VEJJAJIVA, PIMPEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-f420caa2bc80aa3aa4ac44a325ebaf39dec71c22633befc92d703b158bf51b103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Permutations</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SONPANOW, NATTAPON</creatorcontrib><creatorcontrib>VEJJAJIVA, PIMPEN</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SONPANOW, NATTAPON</au><au>VEJJAJIVA, PIMPEN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A FINITE-TO-ONE MAP FROM THE PERMUTATIONS ON A SET</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2017-04</date><risdate>2017</risdate><volume>95</volume><issue>2</issue><spage>177</spage><epage>182</epage><pages>177-182</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>Forster [‘Finite-to-one maps’, J. Symbolic Logic 68 (2003), 1251–1253] showed, in Zermelo–Fraenkel set theory, that if there is a finite-to-one map from ${\mathcal{P}}(A)$ , the set of all subsets of a set $A$ , onto $A$ , then $A$ must be finite. If we assume the axiom of choice (AC), the cardinalities of ${\mathcal{P}}(A)$ and the set $S(A)$ of permutations on $A$ are equal for any infinite set $A$ . In the absence of AC, we cannot make any conclusion about the relationship between the two cardinalities for an arbitrary infinite set. In this paper, we give a condition that makes Forster’s theorem, with ${\mathcal{P}}(A)$ replaced by $S(A)$ , provable without AC.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972716000757</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0004-9727
ispartof Bulletin of the Australian Mathematical Society, 2017-04, Vol.95 (2), p.177-182
issn 0004-9727
1755-1633
language eng
recordid cdi_proquest_journals_2786999272
source Cambridge University Press
subjects Permutations
Set theory
title A FINITE-TO-ONE MAP FROM THE PERMUTATIONS ON A SET
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20FINITE-TO-ONE%20MAP%20FROM%20THE%20PERMUTATIONS%20ON%C2%A0A%C2%A0SET&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=SONPANOW,%20NATTAPON&rft.date=2017-04&rft.volume=95&rft.issue=2&rft.spage=177&rft.epage=182&rft.pages=177-182&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972716000757&rft_dat=%3Cproquest_cross%3E2786999272%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-f420caa2bc80aa3aa4ac44a325ebaf39dec71c22633befc92d703b158bf51b103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786999272&rft_id=info:pmid/&rft_cupid=10_1017_S0004972716000757&rfr_iscdi=true