Loading…
The conversion of natural gas to higher hydrocarbons using a microwave plasma and catalysts
Methane, the major constituent of natural gas, had been converted to higher hydrocarbons by a microwave plasma. The yield of C2+ products increased from 29.2% to 42.2% with increasing the plasma power and decreasing the flow rate of methane. When the catalysts were used in the plasma reactor, the se...
Saved in:
Published in: | Research on chemical intermediates 1998-01, Vol.24 (1), p.55-66 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Methane, the major constituent of natural gas, had been converted to higher hydrocarbons by a microwave plasma. The yield of C2+ products increased from 29.2% to 42.2% with increasing the plasma power and decreasing the flow rate of methane. When the catalysts were used in the plasma reactor, the selectivities of ethylene and acetylene increased while the yield of C2+ remained constant. Among the various catalysts used, the Fe catalyst showed the highest ethylene selectivity of 30%. When we introduced the actual natural gas, more C2+ products were obtained (46%). This is due to the ethane and propane in the natural gas. When an electric field inductance for evolving the high plasma was applied, a high yield in C2+ products of 63.7% was obtained for the Pd-Ni bimetal catalyst. |
---|---|
ISSN: | 0922-6168 1568-5675 |
DOI: | 10.1163/156856798X00195 |