Loading…

CONFORMALLY FLAT CONTACT THREE-MANIFOLDS

In this paper, we consider contact metric three-manifolds $(M;\unicode[STIX]{x1D702},g,\unicode[STIX]{x1D711},\unicode[STIX]{x1D709})$ which satisfy the condition $\unicode[STIX]{x1D6FB}_{\unicode[STIX]{x1D709}}h=\unicode[STIX]{x1D707}h\unicode[STIX]{x1D711}+\unicode[STIX]{x1D708}h$ for some smooth...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Australian Mathematical Society (2001) 2017-10, Vol.103 (2), p.177-189
Main Authors: CHO, JONG TAEK, YANG, DONG-HEE
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we consider contact metric three-manifolds $(M;\unicode[STIX]{x1D702},g,\unicode[STIX]{x1D711},\unicode[STIX]{x1D709})$ which satisfy the condition $\unicode[STIX]{x1D6FB}_{\unicode[STIX]{x1D709}}h=\unicode[STIX]{x1D707}h\unicode[STIX]{x1D711}+\unicode[STIX]{x1D708}h$ for some smooth functions $\unicode[STIX]{x1D707}$ and $\unicode[STIX]{x1D708}$ , where $2h=\unicode[STIX]{x00A3}_{\unicode[STIX]{x1D709}}\unicode[STIX]{x1D711}$ . We prove that if $M$ is conformally flat and if $\unicode[STIX]{x1D707}$ is constant, then $M$ is either a flat manifold or a Sasakian manifold of constant curvature $+1$ . We cannot extend this result for a smooth function $\unicode[STIX]{x1D707}$ . Indeed, we give such an example of a conformally flat contact three-manifold which is not of constant curvature.
ISSN:1446-7887
1446-8107
DOI:10.1017/S1446788716000471