Loading…
CONFORMALLY FLAT CONTACT THREE-MANIFOLDS
In this paper, we consider contact metric three-manifolds $(M;\unicode[STIX]{x1D702},g,\unicode[STIX]{x1D711},\unicode[STIX]{x1D709})$ which satisfy the condition $\unicode[STIX]{x1D6FB}_{\unicode[STIX]{x1D709}}h=\unicode[STIX]{x1D707}h\unicode[STIX]{x1D711}+\unicode[STIX]{x1D708}h$ for some smooth...
Saved in:
Published in: | Journal of the Australian Mathematical Society (2001) 2017-10, Vol.103 (2), p.177-189 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we consider contact metric three-manifolds
$(M;\unicode[STIX]{x1D702},g,\unicode[STIX]{x1D711},\unicode[STIX]{x1D709})$
which satisfy the condition
$\unicode[STIX]{x1D6FB}_{\unicode[STIX]{x1D709}}h=\unicode[STIX]{x1D707}h\unicode[STIX]{x1D711}+\unicode[STIX]{x1D708}h$
for some smooth functions
$\unicode[STIX]{x1D707}$
and
$\unicode[STIX]{x1D708}$
, where
$2h=\unicode[STIX]{x00A3}_{\unicode[STIX]{x1D709}}\unicode[STIX]{x1D711}$
. We prove that if
$M$
is conformally flat and if
$\unicode[STIX]{x1D707}$
is constant, then
$M$
is either a flat manifold or a Sasakian manifold of constant curvature
$+1$
. We cannot extend this result for a smooth function
$\unicode[STIX]{x1D707}$
. Indeed, we give such an example of a conformally flat contact three-manifold which is not of constant curvature. |
---|---|
ISSN: | 1446-7887 1446-8107 |
DOI: | 10.1017/S1446788716000471 |