Loading…
Direct data-driven state-feedback control of general nonlinear systems
Through the use of the Fundamental Lemma for linear systems, a direct data-driven state-feedback control synthesis method is presented for a rather general class of nonlinear (NL) systems. The core idea is to develop a data-driven representation of the so-called velocity-form, i.e., the time-differe...
Saved in:
Published in: | arXiv.org 2023-09 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Through the use of the Fundamental Lemma for linear systems, a direct data-driven state-feedback control synthesis method is presented for a rather general class of nonlinear (NL) systems. The core idea is to develop a data-driven representation of the so-called velocity-form, i.e., the time-difference dynamics, of the NL system, which is shown to admit a direct linear parameter-varying (LPV) representation. By applying the LPV extension of the Fundamental Lemma in this velocity domain, a state-feedback controller is directly synthesized to provide asymptotic stability and dissipativity of the velocity-form. By using realization theory, the synthesized controller is realized as a NL state-feedback law for the original unknown NL system with guarantees of universal shifted stability and dissipativity, i.e., stability and dissipativity w.r.t. any (forced) equilibrium point, of the closed-loop behavior. This is achieved by the use of a single sequence of data from the system and a predefined basis function set to span the scheduling map. The applicability of the results is demonstrated on a simulation example of an unbalanced disc. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2303.10648 |