Loading…
Silicon Enhances Morpho–Physio–Biochemical Responses in Arsenic Stressed Spinach (Spinacia oleracea L.) by Minimizing Its Uptake
Soil contamination with toxic heavy metals [such as arsenic (As)] is becoming a serious global problem due to rapid development of social economy. Silicon (Si), being an important fertilizer element, has been found effective in enhancing plant tolerance against biotic and abiotic stresses. For this...
Saved in:
Published in: | Journal of plant growth regulation 2023-03, Vol.42 (3), p.2053-2072 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Soil contamination with toxic heavy metals [such as arsenic (As)] is becoming a serious global problem due to rapid development of social economy. Silicon (Si), being an important fertilizer element, has been found effective in enhancing plant tolerance against biotic and abiotic stresses. For this purpose, we have designed the current experiment to explore the contribution of Si in mediating growth and eco-physiology by alleviating As stress in a leafy vegetable spinach (
Spinacia oleracea
L.). Fifteen days old seedlings of
S. oleracea
were subjected to the different concentrations of As, i.e., 0 (no As), 50, and 100 µM in the soil which were also supplied with the different exogenous levels of Si, i.e., 0 (no Si), 1.5, and 3 mM. Results from the present study revealed that the As toxicity induced a substantial decreased in shoot length, root length, number of leaves, leaf area, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid content, net photosynthesis, stomatal conductance, transpiration rate, soluble sugar, reducing sugar, non-reducing sugar contents, calcium (Ca
2+
), magnesium (Mg
2+
), iron (Fe
2+
), and phosphorus (P) contents in the roots and shoots of the plants. In contrast, increasing levels of As in the soil significantly (
P
|
---|---|
ISSN: | 0721-7595 1435-8107 |
DOI: | 10.1007/s00344-022-10681-7 |