Loading…
SUBSTRUCTURAL INQUISITIVE LOGICS
This paper shows that any propositional logic that extends a basic substructural logic BSL (a weak, nondistributive, nonassociative, and noncommutative version of Full Lambek logic with a paraconsistent negation) can be enriched with questions in the style of inquisitive semantics and logic. We intr...
Saved in:
Published in: | The review of symbolic logic 2019-06, Vol.12 (2), p.296-330 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper shows that any propositional logic that extends a basic substructural logic BSL (a weak, nondistributive, nonassociative, and noncommutative version of Full Lambek logic with a paraconsistent negation) can be enriched with questions in the style of inquisitive semantics and logic. We introduce a relational semantic framework for substructural logics that enables us to define the notion of an inquisitive extension of λ, denoted as ${\lambda ^?}$, for any logic λ that is at least as strong as BSL. A general theory of these “inquisitive extensions” is worked out. In particular, it is shown how to axiomatize ${\lambda ^?}$, given the axiomatization of λ. Furthermore, the general theory is applied to some prominent logical systems in the class: classical logic Cl, intuitionistic logic Int, and t-norm based fuzzy logics, including for example Łukasiewicz fuzzy logic Ł. For the inquisitive extensions of these logics, axiomatization is provided and a suitable semantics found. |
---|---|
ISSN: | 1755-0203 1755-0211 |
DOI: | 10.1017/S1755020319000017 |