Loading…
Real matrices whose columns have equal modulus coordinates
We study \(m \times n\) matrices whose columns are of the form \[\{(a_{1j},\ldots, a_{nj}): \quad a_{1j} = \lambda_j,\ a_{ij} = \pm\lambda_j\ , \ \lambda_j >0 ,\ j=1,2,\ldots,n\}.\] We explicitly construct for all \(a = (a_1,\ldots, a_{\frac{m(m- 1)}{2}}) \in \mathbb{R}^{\frac{m(m-1)}{2}}\) a mat...
Saved in:
Published in: | arXiv.org 2023-03 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study \(m \times n\) matrices whose columns are of the form \[\{(a_{1j},\ldots, a_{nj}): \quad a_{1j} = \lambda_j,\ a_{ij} = \pm\lambda_j\ , \ \lambda_j >0 ,\ j=1,2,\ldots,n\}.\] We explicitly construct for all \(a = (a_1,\ldots, a_{\frac{m(m- 1)}{2}}) \in \mathbb{R}^{\frac{m(m-1)}{2}}\) a matrix of the above form whose rows have pairwise dot product equal to \(a\). Using Hardamard matrices constructed by Sylvester we classify all matrices of the above form whose rows have pairwise dot product equal to \(a\). We also use our results to reformulate the Hadamard conjecture. |
---|---|
ISSN: | 2331-8422 |