Loading…
Optimal lower bounds for first eigenvalues of Riemann surfaces for large genus
In this article we study the first eigenvalues of closed Riemann surfaces for large genus. We show that for every closed Riemann surface $X_g$ of genus $g$ $(g\geq 2)$, the first eigenvalue of $X_g$ is greater than ${\cal L}_1(X_g)\over g^2$ up to a uniform positive constant multiplication. Where ${...
Saved in:
Published in: | American journal of mathematics 2022-08, Vol.144 (4), p.1087-1114 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article we study the first eigenvalues of closed Riemann surfaces for large genus. We show that for every closed Riemann surface $X_g$ of genus $g$ $(g\geq 2)$, the first eigenvalue of $X_g$ is greater than ${\cal L}_1(X_g)\over g^2$ up to a uniform positive constant multiplication. Where ${\cal L}_1(X_g)$ is the shortest length of multi closed curves separating $X_g$. Moreover,we also show that this new lower bound is optimal as $g\to\infty$. |
---|---|
ISSN: | 0002-9327 1080-6377 1080-6377 |
DOI: | 10.1353/ajm.2022.0024 |