Loading…
Solving the non-local Fokker–Planck equations by deep learning
Physics-informed neural networks (PiNNs) recently emerged as a powerful solver for a large class of partial differential equations (PDEs) under various initial and boundary conditions. In this paper, we propose trapz-PiNNs, physics-informed neural networks incorporated with a modified trapezoidal ru...
Saved in:
Published in: | Chaos (Woodbury, N.Y.) N.Y.), 2023-04, Vol.33 (4) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Physics-informed neural networks (PiNNs) recently emerged as a powerful solver for a large class of partial differential equations (PDEs) under various initial and boundary conditions. In this paper, we propose trapz-PiNNs, physics-informed neural networks incorporated with a modified trapezoidal rule recently developed for accurately evaluating fractional Laplacian and solve the space-fractional Fokker–Planck equations in 2D and 3D. We describe the modified trapezoidal rule in detail and verify the second-order accuracy. We demonstrate that trapz-PiNNs have high expressive power through predicting the solution with low
L
2 relative error by a variety of numerical examples. We also use local metrics, such as point-wise absolute and relative errors, to analyze where it could be further improved. We present an effective method for improving the performance of trapz-PiNN on local metrics, provided that physical observations or high-fidelity simulation of the true solution are available. The trapz-PiNN is able to solve PDEs with fractional Laplacian with arbitrary
α
∈
(
0
,
2
) and on rectangular domains. It also has the potential to be generalized into higher dimensions or other bounded domains. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/5.0128935 |