Loading…
A solution method of slowing-down distribution of energetic particles in tokamaks
The eigen equation of pitch-angle distribution derived from the slowing-down distribution equation with an energetic particle source term is solved by using the Legendre series expansion method. An iteration matrix is established when pitch-angle scattering terms become important. The whole pitch-an...
Saved in:
Published in: | Physics of plasmas 2023-04, Vol.30 (4) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The eigen equation of pitch-angle distribution derived from the slowing-down distribution equation with an energetic particle source term is solved by using the Legendre series expansion method. An iteration matrix is established when pitch-angle scattering terms become important. The whole pitch-angle region is separated into three parts, two passing regions, and one trapped area. The slowing-down distribution for each region is finally obtained. The method is applied to solve the slowing-down equations with source terms that the pitch-angle distribution is Maxwellian-like, neutral beam injection, and radial drifts. The distribution functions are convergent for each source with different pitch-angle distribution. The method is suitable for solving a kinetic equation that pitch-angle scattering collision is important. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/5.0123241 |