Loading…

On-chip flow rate sensing via membrane deformation and bistability probed by microwave resonators

Precise monitoring of fluid flow rates constitutes an integral problem in various lab-on-a-chip applications. While off-chip flow sensors are commonly used, new sensing mechanisms are being investigated to address the needs of increasingly complex lab-on-a-chip platforms which require local and non-...

Full description

Saved in:
Bibliographic Details
Published in:Microfluidics and nanofluidics 2023-04, Vol.27 (4), p.28, Article 28
Main Authors: Secme, Arda, Sedaghat Pisheh, Hadi, Tefek, Uzay, Uslu, H. Dilara, Kucukoglu, Berk, Alatas, Ceren, Kelleci, Mehmet, Hanay, M. Selim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Precise monitoring of fluid flow rates constitutes an integral problem in various lab-on-a-chip applications. While off-chip flow sensors are commonly used, new sensing mechanisms are being investigated to address the needs of increasingly complex lab-on-a-chip platforms which require local and non-intrusive flow rate sensing. In this regard, the deformability of microfluidic components has recently attracted attention as an on-chip sensing mechanism. To develop an on-chip flow rate sensor, here we utilized the mechanical deformations of a 220 nm thick Silicon Nitride membrane integrated with the microfluidic channel. Applied pressure and fluid flow induce different modes of deformations on the membrane, which are electronically probed by an integrated microwave resonator. The flow changes the capacitance, and in turn resonance frequency, of the microwave resonator. By tracking the resonance frequency, liquid flow was probed with the device. In addition to responding to applied pressure by deflection, the membrane also exhibits periodic pulsation motion under fluid flow at a constant rate. The two separate mechanisms, deflection and pulsation, constitute sensing mechanisms for pressure and flow rate. Using the same device architecture, we also detected pressure-induced deformations by a gas to draw further insight into the sensing mechanism of the membrane. Flow rate measurements based on the deformation and instability of thin membranes demonstrate the transduction potential of microwave resonators for fluid–structure interactions at micro- and nanoscales.
ISSN:1613-4982
1613-4990
DOI:10.1007/s10404-023-02640-9