Loading…
Upper bound on the solution to F(2k)n = +F(2k)m with negative subscripts
In this paper, we provide an explicit upper bound on the absolute value of the solutions n < m < 0 to the Diophantine equation F(k)n = ±F(k)m, assuming k is even. Here {F(k)n}n ∈ Z denotes the k-generalized Fibonacci sequence. The upper bound depends only on k.
Saved in:
Published in: | Revista colombiana de matemáticas 2023-04, Vol.56 (2), p.179-187 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we provide an explicit upper bound on the absolute value of the solutions n < m < 0 to the Diophantine equation F(k)n = ±F(k)m, assuming k is even. Here {F(k)n}n ∈ Z denotes the k-generalized Fibonacci sequence. The upper bound depends only on k. |
---|---|
ISSN: | 0034-7426 2357-4100 |
DOI: | 10.15446/recolma.v56n2.108374 |