Loading…

Multi-Fidelity Data-Driven Design and Analysis of Reactor and Tube Simulations

The development of new manufacturing techniques such as 3D printing have enabled the creation of previously infeasible chemical reactor designs. Systematically optimizing the highly parameterized geometries involved in these new classes of reactor is vital to ensure enhanced mixing characteristics a...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-07
Main Authors: Savage, Tom, Basha, Nausheen, McDonough, Jonathan, Matar, Omar K, Ehecatl Antonio del Rio Chanona
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of new manufacturing techniques such as 3D printing have enabled the creation of previously infeasible chemical reactor designs. Systematically optimizing the highly parameterized geometries involved in these new classes of reactor is vital to ensure enhanced mixing characteristics and feasible manufacturability. Here we present a framework to rapidly solve this nonlinear, computationally expensive, and derivative-free problem, enabling the fast prototype of novel reactor parameterizations. We take advantage of Gaussian processes to adaptively learn a multi-fidelity model of reactor simulations across a number of different continuous mesh fidelities. The search space of reactor geometries is explored through an amalgam of different, potentially lower, fidelity simulations which are chosen for evaluation based on weighted acquisition function, trading off information gain with cost of simulation. Within our framework we derive a novel criteria for monitoring the progress and dictating the termination of multi-fidelity Bayesian optimization, ensuring a high fidelity solution is returned before experimental budget is exhausted. The class of reactor we investigate are helical-tube reactors under pulsed-flow conditions, which have demonstrated outstanding mixing characteristics, have the potential to be highly parameterized, and are easily manufactured using 3D printing. To validate our results, we 3D print and experimentally validate the optimal reactor geometry, confirming its mixing performance. In doing so we demonstrate our design framework to be extensible to a broad variety of expensive simulation-based optimization problems, supporting the design of the next generation of highly parameterized chemical reactors.
ISSN:2331-8422