Loading…
First Direct Observation of Nanometer size Hydride Precipitations on Superconducting Niobium
Superconducting niobium serves as a key enabling material for superconducting radio frequency (SRF) technology as well as quantum computing devices. At room temperature, hydrogen commonly occupies tetragonal sites in the Nb lattice as metal (M)-gas (H) phase. When the temperature is decreased, howev...
Saved in:
Published in: | arXiv.org 2023-05 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Superconducting niobium serves as a key enabling material for superconducting radio frequency (SRF) technology as well as quantum computing devices. At room temperature, hydrogen commonly occupies tetragonal sites in the Nb lattice as metal (M)-gas (H) phase. When the temperature is decreased, however, solid solution of Nb-H starts to be precipitated. In this study, we show the first identified topographical features associated with nanometer-size hydride phase (Nb1-xHx) precipitates on metallic superconducting niobium using cryogenic-atomic force microscopy (AFM). Further, high energy grazing incidence X-ray diffraction reveals information regarding the structure and stoichiometry that these precipitates exhibit. Finally, through time-of-flight secondary ion mass spectroscopy (ToF-SIMS), we are able to locate atomic hydrogen sources near the top surface. This systematic study further explains localized degradation of RF superconductivity by the proximity effect due to hydrogen clusters. |
---|---|
ISSN: | 2331-8422 |