Loading…

Asymptotic shapes for stationary first passage percolation on virtually nilpotent groups

We study first passage percolation (FPP) with stationary edge weights on Cayley graphs of finitely generated virtually nilpotent groups. Previous works of Benjamini and Tessera (Electron J Probab 20:1–20, 2015) and Cantrell and Furman (Groups Geom Dyn 11(4):1307–1345, 2017) show that scaling limits...

Full description

Saved in:
Bibliographic Details
Published in:Probability theory and related fields 2023-06, Vol.186 (1-2), p.285-326
Main Authors: Auffinger, Antonio, Gorski, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study first passage percolation (FPP) with stationary edge weights on Cayley graphs of finitely generated virtually nilpotent groups. Previous works of Benjamini and Tessera (Electron J Probab 20:1–20, 2015) and Cantrell and Furman (Groups Geom Dyn 11(4):1307–1345, 2017) show that scaling limits of such FPP are given by Carnot-Carathéodory metrics on the associated graded nilpotent Lie group. We show a converse, i.e. that for any Cayley graph of a finitely generated nilpotent group, any Carnot-Carathéodory metric on the associated graded nilpotent Lie group is the scaling limit of some FPP with stationary edge weights on that graph. Moreover, for any Cayley graph of any finitely generated virtually nilpotent group, any “conjugation-invariant” metric is the scaling limit of some FPP with stationary edge weights on that graph. We also show that the “conjugation-invariant” condition is also a necessary condition in all cases where scaling limits are known to exist.
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-023-01196-7