Loading…
Identifying false positives when targeting students at risk of dropping out
Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision...
Saved in:
Published in: | Education economics 2023-05, Vol.31 (3), p.313-325 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision trade-off inherent in targeting students for dropout prevention explicit. Data of a Dutch vocational education institute is used to show how out-of-sample machine learning predictions can be used to formulate invitation rules in a way that targets students at risk more effectively, thereby facilitating early detection for effective dropout prevention. |
---|---|
ISSN: | 0964-5292 1469-5782 |
DOI: | 10.1080/09645292.2022.2067131 |