Loading…
Identifying false positives when targeting students at risk of dropping out
Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision...
Saved in:
Published in: | Education economics 2023-05, Vol.31 (3), p.313-325 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-54e7dbfbb2d8c749023831d2fda6011516a58560ff3b7c5d9049e9c0991edc033 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-54e7dbfbb2d8c749023831d2fda6011516a58560ff3b7c5d9049e9c0991edc033 |
container_end_page | 325 |
container_issue | 3 |
container_start_page | 313 |
container_title | Education economics |
container_volume | 31 |
creator | Eegdeman, Irene Cornelisz, Ilja Meeter, Martijn van Klaveren, Chris |
description | Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision trade-off inherent in targeting students for dropout prevention explicit. Data of a Dutch vocational education institute is used to show how out-of-sample machine learning predictions can be used to formulate invitation rules in a way that targets students at risk more effectively, thereby facilitating early detection for effective dropout prevention. |
doi_str_mv | 10.1080/09645292.2022.2067131 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2814206031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1387783</ericid><sourcerecordid>2814206031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-54e7dbfbb2d8c749023831d2fda6011516a58560ff3b7c5d9049e9c0991edc033</originalsourceid><addsrcrecordid>eNp9kL1OwzAYRS0EEqXwCJUiMaf4N4k3UFWgUIkFZsuJ7eLSxsF2qfr2xKQwstjDPfe70gFgguAUwQreQF5QhjmeYojTU5SIoBMwQrTgOSsrfApGickTdA4uQlhDiCnjdASeF0q30ZqDbVeZkZugs84FG-2XDtn-XbdZlH6lY4pD3CU4ZDJm3oaPzJlMedd1KXS7eAnOfi5cHf8xeLufv84e8-XLw2J2t8wbWrCYM6pLVZu6xqpqSsohJhVBChslC4gQQ4VkFSugMaQuG6Y4pFzzBnKOtGogIWNwPdztvPvc6RDF2u18208KXCHaC4AE9RQbqMa7ELw2ovN2K_1BICiSN_HrTSRv4uit702Gnva2-evMnxCpyrJK67dDblvj_Fbund8oEeVh47zxsm1sEOT_iW_yT32i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814206031</pqid></control><display><type>article</type><title>Identifying false positives when targeting students at risk of dropping out</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>EBSCOhost Econlit with Full Text</source><source>PAIS Index</source><source>ERIC</source><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Eegdeman, Irene ; Cornelisz, Ilja ; Meeter, Martijn ; van Klaveren, Chris</creator><creatorcontrib>Eegdeman, Irene ; Cornelisz, Ilja ; Meeter, Martijn ; van Klaveren, Chris</creatorcontrib><description>Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision trade-off inherent in targeting students for dropout prevention explicit. Data of a Dutch vocational education institute is used to show how out-of-sample machine learning predictions can be used to formulate invitation rules in a way that targets students at risk more effectively, thereby facilitating early detection for effective dropout prevention.</description><identifier>ISSN: 0964-5292</identifier><identifier>EISSN: 1469-5782</identifier><identifier>DOI: 10.1080/09645292.2022.2067131</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; At Risk Students ; Dropout Characteristics ; Dropout Prevention ; Dropping out ; Foreign Countries ; Identification ; Intervention ; Learning ; machine learning ; Methods ; Prediction ; Prevention ; Study success ; Vocational education ; Vocational Schools</subject><ispartof>Education economics, 2023-05, Vol.31 (3), p.313-325</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-54e7dbfbb2d8c749023831d2fda6011516a58560ff3b7c5d9049e9c0991edc033</citedby><cites>FETCH-LOGICAL-c465t-54e7dbfbb2d8c749023831d2fda6011516a58560ff3b7c5d9049e9c0991edc033</cites><orcidid>0000-0001-5975-4454 ; 0000-0002-9948-7861 ; 0000-0001-5543-8294 ; 0000-0002-5112-6717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27845,27903,27904,33202</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1387783$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Eegdeman, Irene</creatorcontrib><creatorcontrib>Cornelisz, Ilja</creatorcontrib><creatorcontrib>Meeter, Martijn</creatorcontrib><creatorcontrib>van Klaveren, Chris</creatorcontrib><title>Identifying false positives when targeting students at risk of dropping out</title><title>Education economics</title><description>Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision trade-off inherent in targeting students for dropout prevention explicit. Data of a Dutch vocational education institute is used to show how out-of-sample machine learning predictions can be used to formulate invitation rules in a way that targets students at risk more effectively, thereby facilitating early detection for effective dropout prevention.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>At Risk Students</subject><subject>Dropout Characteristics</subject><subject>Dropout Prevention</subject><subject>Dropping out</subject><subject>Foreign Countries</subject><subject>Identification</subject><subject>Intervention</subject><subject>Learning</subject><subject>machine learning</subject><subject>Methods</subject><subject>Prediction</subject><subject>Prevention</subject><subject>Study success</subject><subject>Vocational education</subject><subject>Vocational Schools</subject><issn>0964-5292</issn><issn>1469-5782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>7SW</sourceid><sourceid>7TQ</sourceid><sourceid>8BJ</sourceid><recordid>eNp9kL1OwzAYRS0EEqXwCJUiMaf4N4k3UFWgUIkFZsuJ7eLSxsF2qfr2xKQwstjDPfe70gFgguAUwQreQF5QhjmeYojTU5SIoBMwQrTgOSsrfApGickTdA4uQlhDiCnjdASeF0q30ZqDbVeZkZugs84FG-2XDtn-XbdZlH6lY4pD3CU4ZDJm3oaPzJlMedd1KXS7eAnOfi5cHf8xeLufv84e8-XLw2J2t8wbWrCYM6pLVZu6xqpqSsohJhVBChslC4gQQ4VkFSugMaQuG6Y4pFzzBnKOtGogIWNwPdztvPvc6RDF2u18208KXCHaC4AE9RQbqMa7ELw2ovN2K_1BICiSN_HrTSRv4uit702Gnva2-evMnxCpyrJK67dDblvj_Fbund8oEeVh47zxsm1sEOT_iW_yT32i</recordid><startdate>20230504</startdate><enddate>20230504</enddate><creator>Eegdeman, Irene</creator><creator>Cornelisz, Ilja</creator><creator>Meeter, Martijn</creator><creator>van Klaveren, Chris</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TQ</scope><scope>8BJ</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0001-5975-4454</orcidid><orcidid>https://orcid.org/0000-0002-9948-7861</orcidid><orcidid>https://orcid.org/0000-0001-5543-8294</orcidid><orcidid>https://orcid.org/0000-0002-5112-6717</orcidid></search><sort><creationdate>20230504</creationdate><title>Identifying false positives when targeting students at risk of dropping out</title><author>Eegdeman, Irene ; Cornelisz, Ilja ; Meeter, Martijn ; van Klaveren, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-54e7dbfbb2d8c749023831d2fda6011516a58560ff3b7c5d9049e9c0991edc033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>At Risk Students</topic><topic>Dropout Characteristics</topic><topic>Dropout Prevention</topic><topic>Dropping out</topic><topic>Foreign Countries</topic><topic>Identification</topic><topic>Intervention</topic><topic>Learning</topic><topic>machine learning</topic><topic>Methods</topic><topic>Prediction</topic><topic>Prevention</topic><topic>Study success</topic><topic>Vocational education</topic><topic>Vocational Schools</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eegdeman, Irene</creatorcontrib><creatorcontrib>Cornelisz, Ilja</creatorcontrib><creatorcontrib>Meeter, Martijn</creatorcontrib><creatorcontrib>van Klaveren, Chris</creatorcontrib><collection>Taylor & Francis Open Access Journals</collection><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Education economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eegdeman, Irene</au><au>Cornelisz, Ilja</au><au>Meeter, Martijn</au><au>van Klaveren, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1387783</ericid><atitle>Identifying false positives when targeting students at risk of dropping out</atitle><jtitle>Education economics</jtitle><date>2023-05-04</date><risdate>2023</risdate><volume>31</volume><issue>3</issue><spage>313</spage><epage>325</epage><pages>313-325</pages><issn>0964-5292</issn><eissn>1469-5782</eissn><abstract>Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision trade-off inherent in targeting students for dropout prevention explicit. Data of a Dutch vocational education institute is used to show how out-of-sample machine learning predictions can be used to formulate invitation rules in a way that targets students at risk more effectively, thereby facilitating early detection for effective dropout prevention.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/09645292.2022.2067131</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5975-4454</orcidid><orcidid>https://orcid.org/0000-0002-9948-7861</orcidid><orcidid>https://orcid.org/0000-0001-5543-8294</orcidid><orcidid>https://orcid.org/0000-0002-5112-6717</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-5292 |
ispartof | Education economics, 2023-05, Vol.31 (3), p.313-325 |
issn | 0964-5292 1469-5782 |
language | eng |
recordid | cdi_proquest_journals_2814206031 |
source | EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); EBSCOhost Econlit with Full Text; PAIS Index; ERIC; Taylor and Francis Social Sciences and Humanities Collection |
subjects | Accuracy Algorithms Artificial Intelligence At Risk Students Dropout Characteristics Dropout Prevention Dropping out Foreign Countries Identification Intervention Learning machine learning Methods Prediction Prevention Study success Vocational education Vocational Schools |
title | Identifying false positives when targeting students at risk of dropping out |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20false%20positives%20when%20targeting%20students%20at%20risk%20of%20dropping%20out&rft.jtitle=Education%20economics&rft.au=Eegdeman,%20Irene&rft.date=2023-05-04&rft.volume=31&rft.issue=3&rft.spage=313&rft.epage=325&rft.pages=313-325&rft.issn=0964-5292&rft.eissn=1469-5782&rft_id=info:doi/10.1080/09645292.2022.2067131&rft_dat=%3Cproquest_infor%3E2814206031%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-54e7dbfbb2d8c749023831d2fda6011516a58560ff3b7c5d9049e9c0991edc033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2814206031&rft_id=info:pmid/&rft_ericid=EJ1387783&rfr_iscdi=true |