Loading…

Identifying false positives when targeting students at risk of dropping out

Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision...

Full description

Saved in:
Bibliographic Details
Published in:Education economics 2023-05, Vol.31 (3), p.313-325
Main Authors: Eegdeman, Irene, Cornelisz, Ilja, Meeter, Martijn, van Klaveren, Chris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-54e7dbfbb2d8c749023831d2fda6011516a58560ff3b7c5d9049e9c0991edc033
cites cdi_FETCH-LOGICAL-c465t-54e7dbfbb2d8c749023831d2fda6011516a58560ff3b7c5d9049e9c0991edc033
container_end_page 325
container_issue 3
container_start_page 313
container_title Education economics
container_volume 31
creator Eegdeman, Irene
Cornelisz, Ilja
Meeter, Martijn
van Klaveren, Chris
description Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision trade-off inherent in targeting students for dropout prevention explicit. Data of a Dutch vocational education institute is used to show how out-of-sample machine learning predictions can be used to formulate invitation rules in a way that targets students at risk more effectively, thereby facilitating early detection for effective dropout prevention.
doi_str_mv 10.1080/09645292.2022.2067131
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2814206031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1387783</ericid><sourcerecordid>2814206031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-54e7dbfbb2d8c749023831d2fda6011516a58560ff3b7c5d9049e9c0991edc033</originalsourceid><addsrcrecordid>eNp9kL1OwzAYRS0EEqXwCJUiMaf4N4k3UFWgUIkFZsuJ7eLSxsF2qfr2xKQwstjDPfe70gFgguAUwQreQF5QhjmeYojTU5SIoBMwQrTgOSsrfApGickTdA4uQlhDiCnjdASeF0q30ZqDbVeZkZugs84FG-2XDtn-XbdZlH6lY4pD3CU4ZDJm3oaPzJlMedd1KXS7eAnOfi5cHf8xeLufv84e8-XLw2J2t8wbWrCYM6pLVZu6xqpqSsohJhVBChslC4gQQ4VkFSugMaQuG6Y4pFzzBnKOtGogIWNwPdztvPvc6RDF2u18208KXCHaC4AE9RQbqMa7ELw2ovN2K_1BICiSN_HrTSRv4uit702Gnva2-evMnxCpyrJK67dDblvj_Fbund8oEeVh47zxsm1sEOT_iW_yT32i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814206031</pqid></control><display><type>article</type><title>Identifying false positives when targeting students at risk of dropping out</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>EBSCOhost Econlit with Full Text</source><source>PAIS Index</source><source>ERIC</source><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Eegdeman, Irene ; Cornelisz, Ilja ; Meeter, Martijn ; van Klaveren, Chris</creator><creatorcontrib>Eegdeman, Irene ; Cornelisz, Ilja ; Meeter, Martijn ; van Klaveren, Chris</creatorcontrib><description>Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision trade-off inherent in targeting students for dropout prevention explicit. Data of a Dutch vocational education institute is used to show how out-of-sample machine learning predictions can be used to formulate invitation rules in a way that targets students at risk more effectively, thereby facilitating early detection for effective dropout prevention.</description><identifier>ISSN: 0964-5292</identifier><identifier>EISSN: 1469-5782</identifier><identifier>DOI: 10.1080/09645292.2022.2067131</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; At Risk Students ; Dropout Characteristics ; Dropout Prevention ; Dropping out ; Foreign Countries ; Identification ; Intervention ; Learning ; machine learning ; Methods ; Prediction ; Prevention ; Study success ; Vocational education ; Vocational Schools</subject><ispartof>Education economics, 2023-05, Vol.31 (3), p.313-325</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-54e7dbfbb2d8c749023831d2fda6011516a58560ff3b7c5d9049e9c0991edc033</citedby><cites>FETCH-LOGICAL-c465t-54e7dbfbb2d8c749023831d2fda6011516a58560ff3b7c5d9049e9c0991edc033</cites><orcidid>0000-0001-5975-4454 ; 0000-0002-9948-7861 ; 0000-0001-5543-8294 ; 0000-0002-5112-6717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27845,27903,27904,33202</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1387783$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Eegdeman, Irene</creatorcontrib><creatorcontrib>Cornelisz, Ilja</creatorcontrib><creatorcontrib>Meeter, Martijn</creatorcontrib><creatorcontrib>van Klaveren, Chris</creatorcontrib><title>Identifying false positives when targeting students at risk of dropping out</title><title>Education economics</title><description>Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision trade-off inherent in targeting students for dropout prevention explicit. Data of a Dutch vocational education institute is used to show how out-of-sample machine learning predictions can be used to formulate invitation rules in a way that targets students at risk more effectively, thereby facilitating early detection for effective dropout prevention.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>At Risk Students</subject><subject>Dropout Characteristics</subject><subject>Dropout Prevention</subject><subject>Dropping out</subject><subject>Foreign Countries</subject><subject>Identification</subject><subject>Intervention</subject><subject>Learning</subject><subject>machine learning</subject><subject>Methods</subject><subject>Prediction</subject><subject>Prevention</subject><subject>Study success</subject><subject>Vocational education</subject><subject>Vocational Schools</subject><issn>0964-5292</issn><issn>1469-5782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>7SW</sourceid><sourceid>7TQ</sourceid><sourceid>8BJ</sourceid><recordid>eNp9kL1OwzAYRS0EEqXwCJUiMaf4N4k3UFWgUIkFZsuJ7eLSxsF2qfr2xKQwstjDPfe70gFgguAUwQreQF5QhjmeYojTU5SIoBMwQrTgOSsrfApGickTdA4uQlhDiCnjdASeF0q30ZqDbVeZkZugs84FG-2XDtn-XbdZlH6lY4pD3CU4ZDJm3oaPzJlMedd1KXS7eAnOfi5cHf8xeLufv84e8-XLw2J2t8wbWrCYM6pLVZu6xqpqSsohJhVBChslC4gQQ4VkFSugMaQuG6Y4pFzzBnKOtGogIWNwPdztvPvc6RDF2u18208KXCHaC4AE9RQbqMa7ELw2ovN2K_1BICiSN_HrTSRv4uit702Gnva2-evMnxCpyrJK67dDblvj_Fbund8oEeVh47zxsm1sEOT_iW_yT32i</recordid><startdate>20230504</startdate><enddate>20230504</enddate><creator>Eegdeman, Irene</creator><creator>Cornelisz, Ilja</creator><creator>Meeter, Martijn</creator><creator>van Klaveren, Chris</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TQ</scope><scope>8BJ</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0001-5975-4454</orcidid><orcidid>https://orcid.org/0000-0002-9948-7861</orcidid><orcidid>https://orcid.org/0000-0001-5543-8294</orcidid><orcidid>https://orcid.org/0000-0002-5112-6717</orcidid></search><sort><creationdate>20230504</creationdate><title>Identifying false positives when targeting students at risk of dropping out</title><author>Eegdeman, Irene ; Cornelisz, Ilja ; Meeter, Martijn ; van Klaveren, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-54e7dbfbb2d8c749023831d2fda6011516a58560ff3b7c5d9049e9c0991edc033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>At Risk Students</topic><topic>Dropout Characteristics</topic><topic>Dropout Prevention</topic><topic>Dropping out</topic><topic>Foreign Countries</topic><topic>Identification</topic><topic>Intervention</topic><topic>Learning</topic><topic>machine learning</topic><topic>Methods</topic><topic>Prediction</topic><topic>Prevention</topic><topic>Study success</topic><topic>Vocational education</topic><topic>Vocational Schools</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eegdeman, Irene</creatorcontrib><creatorcontrib>Cornelisz, Ilja</creatorcontrib><creatorcontrib>Meeter, Martijn</creatorcontrib><creatorcontrib>van Klaveren, Chris</creatorcontrib><collection>Taylor &amp; Francis Open Access Journals</collection><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Education economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eegdeman, Irene</au><au>Cornelisz, Ilja</au><au>Meeter, Martijn</au><au>van Klaveren, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1387783</ericid><atitle>Identifying false positives when targeting students at risk of dropping out</atitle><jtitle>Education economics</jtitle><date>2023-05-04</date><risdate>2023</risdate><volume>31</volume><issue>3</issue><spage>313</spage><epage>325</epage><pages>313-325</pages><issn>0964-5292</issn><eissn>1469-5782</eissn><abstract>Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision trade-off inherent in targeting students for dropout prevention explicit. Data of a Dutch vocational education institute is used to show how out-of-sample machine learning predictions can be used to formulate invitation rules in a way that targets students at risk more effectively, thereby facilitating early detection for effective dropout prevention.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/09645292.2022.2067131</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5975-4454</orcidid><orcidid>https://orcid.org/0000-0002-9948-7861</orcidid><orcidid>https://orcid.org/0000-0001-5543-8294</orcidid><orcidid>https://orcid.org/0000-0002-5112-6717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-5292
ispartof Education economics, 2023-05, Vol.31 (3), p.313-325
issn 0964-5292
1469-5782
language eng
recordid cdi_proquest_journals_2814206031
source EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); EBSCOhost Econlit with Full Text; PAIS Index; ERIC; Taylor and Francis Social Sciences and Humanities Collection
subjects Accuracy
Algorithms
Artificial Intelligence
At Risk Students
Dropout Characteristics
Dropout Prevention
Dropping out
Foreign Countries
Identification
Intervention
Learning
machine learning
Methods
Prediction
Prevention
Study success
Vocational education
Vocational Schools
title Identifying false positives when targeting students at risk of dropping out
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20false%20positives%20when%20targeting%20students%20at%20risk%20of%20dropping%20out&rft.jtitle=Education%20economics&rft.au=Eegdeman,%20Irene&rft.date=2023-05-04&rft.volume=31&rft.issue=3&rft.spage=313&rft.epage=325&rft.pages=313-325&rft.issn=0964-5292&rft.eissn=1469-5782&rft_id=info:doi/10.1080/09645292.2022.2067131&rft_dat=%3Cproquest_infor%3E2814206031%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-54e7dbfbb2d8c749023831d2fda6011516a58560ff3b7c5d9049e9c0991edc033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2814206031&rft_id=info:pmid/&rft_ericid=EJ1387783&rfr_iscdi=true