Loading…
Regular Hom-Lie structures on incidence algebras
We fully characterize regular Hom-Lie structures on the incidence algebra I ( X , K ) of a finite connected poset X over a field K . We prove that such a structure is the sum of a central-valued linear map annihilating the Jacobson radical of I ( X , K ) with the composition of certain inner and m...
Saved in:
Published in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2023-07, Vol.117 (3), Article 122 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We fully characterize regular Hom-Lie structures on the incidence algebra
I
(
X
,
K
) of a finite connected poset
X
over a field
K
. We prove that such a structure is the sum of a central-valued linear map annihilating the Jacobson radical of
I
(
X
,
K
) with the composition of certain inner and multiplicative automorphisms of
I
(
X
,
K
). |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-023-01454-2 |