Loading…
Bounded Weight Modules Over the Lie Superalgebra of Cartan W-type
Let A m , n be the tensor product of the polynomial algebra in m even variables and the exterior algebra in n odd variables over the complex field ℂ , and the Witt superalgebra W m , n be the Lie superalgebra of superderivations of A m , n . In this paper, we classify the non-trivial simple bounded...
Saved in:
Published in: | Algebras and representation theory 2023-06, Vol.26 (3), p.763-781 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
A
m
,
n
be the tensor product of the polynomial algebra in
m
even variables and the exterior algebra in
n
odd variables over the complex field
ℂ
, and the Witt superalgebra
W
m
,
n
be the Lie superalgebra of superderivations of
A
m
,
n
. In this paper, we classify the non-trivial simple bounded weight
W
m
,
n
modules with respect to the standard Cartan subalgebra of
W
m
,
n
. Any such module is a simple quotient of a tensor module
F
(
P
,
L
(
V
1
⊗
V
2
)) for a simple weight module
P
over the Weyl superalgebra
K
m
,
n
, a finite-dimensional simple
g
l
m
-module
V
1
and a simple bounded
g
l
n
-module
V
2
. |
---|---|
ISSN: | 1386-923X 1572-9079 |
DOI: | 10.1007/s10468-021-10112-3 |