Loading…

Time Optimal Feedback Control for 3D Navier–Stokes-Voigt Equations

In this article, we discuss a time optimal feedback control for asymmetrical 3D Navier–Stokes–Voigt equations. Firstly, we consider the existence of the admissible trajectories for the asymmetrical 3D Navier–Stokes–Voigt equations by using the well-known Cesari property and the Fillippove’s theorem....

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2023-05, Vol.15 (5), p.1127
Main Authors: Li, Yunxiang, Bin, Maojun, Shi, Cuiyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, we discuss a time optimal feedback control for asymmetrical 3D Navier–Stokes–Voigt equations. Firstly, we consider the existence of the admissible trajectories for the asymmetrical 3D Navier–Stokes–Voigt equations by using the well-known Cesari property and the Fillippove’s theorem. Secondly, we study the existence result of a time optimal control for the feedback control systems. Lastly, asymmetrical Clarke’s subdifferential inclusions and asymmetrical 3D Navier–Stokes–Voigt differential variational inequalities are given to explain our main results.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym15051127