Loading…
Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence
We propose a novel non-parametric learning paradigm for the identification of drift and diffusion coefficients of multi-dimensional non-linear stochastic differential equations, which relies upon discrete-time observations of the state. The key idea essentially consists of fitting a RKHS-based appro...
Saved in:
Published in: | arXiv.org 2024-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a novel non-parametric learning paradigm for the identification of drift and diffusion coefficients of multi-dimensional non-linear stochastic differential equations, which relies upon discrete-time observations of the state. The key idea essentially consists of fitting a RKHS-based approximation of the corresponding Fokker-Planck equation to such observations, yielding theoretical estimates of non-asymptotic learning rates which, unlike previous works, become increasingly tighter when the regularity of the unknown drift and diffusion coefficients becomes higher. Our method being kernel-based, offline pre-processing may be profitably leveraged to enable efficient numerical implementation, offering excellent balance between precision and computational complexity. |
---|---|
ISSN: | 2331-8422 |